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Abstract. Crystal growth in a diffusion field is studied by means of a lattice gas
model. In a closed system the crystal takes an equilibrium form, whereas in an open
system where the crystal is in contact with a gas reservoir , the crystal grows
steadily. For a small crystal or at a small chemical potential difference Ay between
the gas and the crystal, the growth form is polygonal. On increasing Ap or for a large
crystal, it varies to hopper-like, to dendritic and finally to a fractal structure. The
variations of the growth shape as a function of the temperature and of the gas density
are also investigated. The growth rate and the size of a polygonal crystal are
interpreted by a single nucleation and growth mechanism.

1. Introduction

Recently intensive studies have been done on pattern formations as it is a
typical problem of nonequilibrium statistical physics. Crystal growth is one of these
pattern formation phenomenon (1). Crystal has shown various beautiful and
mysterious forms. Morphology of a crystal reflects its history during the growth and
includes various interesting physical phenomena. Therefore, ithas been investigated
foralong time, while our understanding of its form is still immature. The main cause
of this unsatisfactory situation is that the crystal growth or the pattern formation is
a dynamical and nonlinear phenomena, and the well founded methods of equilib-
rium statistical mechanics and linear analysis are not applicable. Our main concern
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here is the understanding of the morphology of a crystal growing in a mass or a heat
diffusion field. The growth form depends on a surface tension and on a surface
kinetics. If the solidification is controlled by the surface kinetics with singularity,
the crystal is enclosed by faceted faces (2). If alocal equilibrium on a crystal surface
holds, its shape is governed by an interfacial tension and turns into a dendritic form
with a parabolic tip and almost regular sidebranches (1, 3, 4). In the limit of
vanishing interfacial energy, patterns become fractal, whose structure is characterized
by a fractal dimension Dy (5).

In macroscopic theories of the solidification (1, 7, 8, 9, 10, 11), and related
phenomena, the surface tension and kinetics are treated phenomenologically and
are given as an input parameter. On the other hand, in the theories of equilibrium
phase transitions of an interface as a roughening or a faceting transition (12, 13, 14)
the surface tension is treated microscopically. In this paper we propose a simple
microscopic model ofa crystal growing in a diffusion field, such that the equilibrium
and the growth forms of the crystal are treated in a unified way (15). By means of
extensive Monte Carlo simulations, equilibrium and growth forms are obtained
under various conditions of the temperature, chemical potential and the gas density.
The growth velocity and the maximum size of a polygonal crystal are explained in
terms of a stable single nucleation theory.

2. The Model and the Simulation Algorithm

In order to treat microscopically a situation where a solid coexists with a gas,
we introduce a simple model in which the gas and the solid phases consist of their
respective atoms. A gas atom is mobile to give an entropy contribution to the
chemical potential, whereas a solid atom is immobile but its chemical potential has
a contribution from the energy.

The situation is further simplified by considering a lattice system, where the
space is divided into discrete lattice points. Each lattice site can be occupied by a
solid atom, by a gas atom or can be empty. Double occupancy of a lattice site is
forbidden. The crystal we consider lies on a square lattice. Since the system has
four-fold symmetry, we consider only an upper-right quarter of a crystal nucleus in
the positive x and y region. In order to fix the center of the mass at the origin, a
skewed boundary condition is assumed so that the x- and y-axes are contiguous to
each other.

The attractive interaction is assumed between the nearest neighboring solid
atoms. Gas atoms are assumed to have no interaction so as to suppress the
polynucleation process. When a solid atom evaporates, it costs an energy . (>0),
whereas a gas atom gains entropy by exchanging its position with a neighboring
empty site. This exchange process mimics the diffusion in a gas phase. These
energetics are summerized in a Hamiltonian
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where the first summation runs over all the nearest neighbor pairs, and the
crystallization order parameter »; on an i-th lattice site is unity when it is occupied
by a solid atom and vanishes otherwise. In terms of an Ising spin variable, S; = 2n;
—1=x1, the Hamiltonian reduces to that of a ferromagnetic Ising model in a field;

H=-J) S:S; - %ZSi + const (2)
) ;

with J = /4, p, = p + z&/2 and z being the coordination number.

We perform Monte Carlo simulations of the lattice gas model, Eq. (1), to obtain
crystal shapes. Stochastic evolution of the system consists of the following steps:
Every gas atom hops freely from a lattice site to one of its nearest neighbors, unless
it is occupied. When a gas atom diffuses to come into contact with solid atoms, it
crystallizes with a probability W. Inverse to this crystallization process is an
evaporation, where a solid atom at an interface tries to turn into a gas atom. These
crystallization and evaporation processes at the interface should satisfy the detailed
balance condition. We have adapted the heatbath algorithm: Transition probability
W for a process with an energy change AE at a temperature T is set to be W(AE) =
[1+exp(AE/T)]!. We neglect evaporation in the bulk crystal and solidification in
the bulk of the gas phase, since our main concern is on the crystal morphology at
low temperatures where these excitations in bulk phases are quite rare.

A simulation starts with a solid nucleus situated in a closed vessel. Some solid
atoms evaporate to a gas phase and diffuse away from the interface, but some gas
atoms condense back. From this simulation, we get an equilibrium form of the
crystal (12, 13, 14). Instead, if the system is expanded steadily by providing an atom
reservoir with a prescribed gas density at the periphery of the system, crystal
continues to grow and we get a growth form.

3. Equilibrium Shape and Size

Wulff’s theorem states that an equilibrium shape of a crystal can be constructed
from an orientation-dependent surface tension y(8) (16). Since our model, Eq. (1),
corresponds to the Ising ferromagnet, Eq. (2), y(0) is exactly known for a square
lattice (14). The theoretical profile is compared with the simulated shape to test our
simulation algorithm.

InFig. 1 we show an averaged interface profile at temperatures a) 7/J=0.3 and
b) 7/J=0.6 (15). These temperatures are far below the Ising critical temperature 7,/

J=2/n(1 + /2 ) = 2.27 and assures the absence of a hole creation in the crystal
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nucleus. At each temperature crystal shapes for various chemical potentials p are
similar, but the size increases as i, increases. On heating the system the crystal
shape becomes rounded.

Our simulation profiles agree with theoretical ones which are drawn by curves
in Fig. 1 with an adjustment in the top height of the crystal. The size of a nucleus,
N, obtained by the simulation agrees with the expectation calculated from the free
energy minimization; (15)

N, - (MJ G

Au

where Al = i, — U is the chemical potential difference between the solid i and the
gas, , = —T1n (ny) of density n, and ¥ (7) is the averaged surface tension.
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Fig. 1. Average interfacial profiles at (a) 7/J = 0.3 and (b) 7/J = 0.6 with various chemical potentials.
Curves are the exact profile of the two-dimensional Ising model. The top height is fitted to the
simulated profile.

4. Growth Shape

4.1 Simulation of an open system

In an open system where the volume is expanding, the crystal grows. In order
to measure a time, we introduce a time unit such that a single diffusion trial of a gas
atom corresponds to a time increment of Az = (4N,)~! when there are N, gas atoms.
By choosing the lattice parameter as a unit of length, the diffusion constant D then
reduces to unity. We prepare a list of gas and the interfacial solid atoms, and select
an atom from the list randomly. Ifit is a gas atom diffusion is tried, and when its new
position is next to the solid atom solidification is tried. If the selected is a solid atom,
evaporation is tried. Therefore, in a time increment of Az = 1/4 each gas atom tries
diffusion as well as solidification if possible, and each solid atom on the interface
tries evaporation once on the average. The vesselis assumed to have a circular shape
in order to lessen an anisotropy in the diffusion field.

Simulations are performed at low temperatures as 7/J=0.3 ~ 1.2. A chemical
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Fig. 2. Stroboscopic growth shapes of the crystal at various p, for 77/ = 0.3 and n, = 0.5. Gas atoms are
distributed around the final configurations of the crystal. Chemical potential py/T'is (a) 5.0, (b) 7.0,
(c) 10.0, (d) 11.0 and (e) 13.0. For (e) only the final crystal shape is shown in black.

potential i is chosen such that the gas density 7, is higher than the thermodynamic
equilibrium density n, ., = exp(-uy/T). The crystal is then surrounded by a super-
saturated gas. By setting an initial size of a crystal nucleus larger than the critical
one Eq. (3), the crystal starts to grow.

For a continuous growth of the crystal, we provide a particle reservoir at the
periphery of the vessel, which is a thin region of a fixed gas-density. The reservoir
should be set far enough from the interface in order not to disturb the gas density
distribution. When the crystal grows, it absorbs surrounding gas atoms and the
density around the crystal is suppressed. The natural length scale which characterizes
the variation of the diffusion field is the diffusion length /=2D/V fora crystal growing
with a velocity V. The best way to shift the particle reservoir outward is, therefore,
to keep its separation from the crystal tip longer than /. This scheme is applicable
at high py/7. We call this boundary condition as B.C.1. At small pu,, however, the
crystal grows very slowly, and the diffusion length / =2D/V is very long. In order
to keep the system small enough and realize simulation, we choose another
boundary condition: The particle reservoir is shifted outwardly when the density in
front of this region is depressed lower than the level of random fluctuation from the
prescribed value, namely below 96% of n,. We call such a boundary condition
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B.C.2. At ny/T=8.0 simulations with two different boundary conditions, B.C.1 and
B.C.2, yield similar shape evolution, and the velocities agree with each other.

4.2 Structure

We describe simulation results at a temperature 7/.J=0.3. Growth shapes vary
on increasing the energy gain /7, as is shown in Fig. 2. At small u/7=4.0 and 5.0
crystal grows slowly and its shape is polygonal up to our maximum simulation size
(Fig. 2a). On increasing p/T from 6.0 to 10.0, the crystal grows initially in a square
form, but becomes unstable at the corner, and turns into a dendritic form ultimately
(Figs. 2b, c). Further increase in /T leads to the splitting of the dendritic tip and
many irregular branches are observed (Fig. 2d). Until u/T= 12 the structure is rather
open, but for puy/T > u,y/T = 13 the width and the spacing between dendritic
branches becomes very fine and the whole structure looks homogeneous (Fig. 2e).
This structural change around pgy, is caused by the variation in the growth
mechanism, and will be discussed in relation to the growth rate.

4.3 Growth rate

The dynamics of the crystal growth is resolved from the time evolution of the
crystal tip. A separation ry;, of the farthest tip of the crystal from the origin increases
asymptotically in proportion to the time ¢. Growth rate is defined by the time
variation of 4, as V= Ary;,/At. When the crystal grows in a square form or inan open
dendritic form, the growth rate is very small (Fig. 3a). In the previous paper (15),
by fitting ¥ for 11 > uy/T > 4 we obtained the relation

Vo~ exp(—O. 29(e - ,us) / T) (4)

On the other hand, for py/T higher than p /T ~ 13 ~ &/T (= 4J/T), the energy
barrier against nucleation, € — i, vanishes and most gas atoms solidify when they
attach to the crystal surface. The velocity V at large p’s increases drastically
compared to the nucleation growth rate at small py’s. The diffusion length is here
less than unity.

When pis infinite, a gas atom solidifies instantaneously as it touches the solid
aggregate. The problem is the same with the DLA model growing in a gas of a finite
density. In fact, the rate V(u, =o0)=3.25(15) is a little smaller but of the same order
of the value V= 3.64 obtained in the DLA growth simulation from a linear seed of
the solid (17).

4.4 The stability limit of a square crystal
To represent the structure of an aggregate, the fractal dimension D,defined by

. /2 . ;
N;~ R, is often used, where R, = (1 / N Z,N:-*l r? ) being the radius of gyration.

We have estimated the exponent Dy at various p’s for the dendritic growth and
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Fig. 3. (a) The (¢ — p,)/T-dependence of In V'and In V"2 at n, = 0.5, 7/J = 0.3. (b) The n,-dependence
of ¥ and V(" at u/T=10.0 and 7/J = 0.3.
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obtained the value around 1.7 (15), quite similar to the fractal dimension ofthe DLA
(5), but the dendrite here is almost regular. The value of D,smaller than the space
dimension d= 2 does not necessarily mean the irregular fractal structure but merely
represents the openness of the structure.

For g higher than p g, the diffusion length is less than unity, and the growth
form shows very fine structure. The exponent D,of the aggregate agrees now to the
space dimension d =2 indicating that the system is homogeneous (17). Even though
Dy is equal to d = 2 both at very small and large py’s, the crystal structure is quite
different: a polygonal structure at small pg’s and an irregular compact structure at
large p’s. The difference can not be represented by means of the fractal dimension.

The difference becomes obvious in looking at the number of the interfacial
solid atoms N, ;. When a crystal grows in a square form to a size N, N, ; is expected

to be proportional to the linear dimension or the peripheral length 2,/N, — 1,

whereas for a ramified compact structure, N is expected to be proportional to N;.
Therefore, we define a parameter S(7) by
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Fig. 4. Structure indicator S, which relates the number of interfacial solid atoms Nj ; to that of the total
solid atoms N, plotted vs (¢ — pg)/T with n, = 0.5.
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o ln(NM- /(2yN, -1 ))
In(N, / (2N, ~1))

(5)

Figure 4 depicts the variation of the parameter S as a function of the solid
chemical potential (¢ — p,)/T. At a small pg and for small crystals, S vanishes,
representing that the shape is polygonal. Atlarge p or for a large crystal, Sbecomes
of order unity, representing that the shape is complicated and a finite fraction of
solid atoms are located on the interface.

Atintermediate values of i, crystal morphology changes, as the crystal grows,
from a small polygonal shape to a large dendritic one. In order to characterize this
morphological change at a fixed i, we estimate the stability limit of the square

crystal, Ly, suchthat for L(#) = | N, (#) <Lyax, S(#) is about 0, while for L(£)> Ly,

S(#) deviates significantly from zero. It is observed that L ., depends exponentially
on the chemical potential pi, (Fig. 5a). The least-squres fit leads to the relation (15);

Lyng ~ exp(0.59(2— 1) / T) (6)

When the crystal grows larger than L,,,,, it takes a dendritic profile, but the tip
size and the sidebranch periodicity of the dendritic structure still seem to be scaled
with L., as shown in Fig. 2. Thus, L ,,, characterizes the structure in the crystal.
Discussion on the L, will be given later in terms of the nucleation theory.

4.5 Temperature and the gas density variation

We perform simulations at a higher temperature 77/ = 0.6 with various .
Variations in structures and in growth rate as a function of ’s are quite similar to
those at a temperature 7/ = 0.3 except the threshold value of i ¢,. Now, pg /T is
about 6.67 instead of 13 at 7/J/ = 0.3. In both cases, however, p y, itself is about the
same as € = 4J. Therefore, the temperature dependence of the structure and the
growth rate is scaled by (e — ps)/7. The growth rate } and the structure indicator S
are plotted against (¢ — p,)/7T in Figs. 3a and 4 respectively, in which the results at
other temperature are also included. One can note the scaling behavior obviously.

The density dependence of the structure and the growth rate are complex. At
a fixed temperature 7/J=0.3, simulations for various gas densities were performed
at several values of ;. We can not find the scaling behavior of the structure indicator
S and the growth rate V as a function of Ap = pg — pg = pg + 7ln g
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5. Single Nucleation Theory of a Polygonal Crystal Growth

5.1 Diffusion with surface kinetics

In order to understand T-, u- and n,-dependence of the growth rate and shape
of the crystal, we consider the growth of a square-shaped crystal from a diffusion
gas field under the control of the surface kinetics. The density of the surrounding
gas atoms C(z, x, y) satisfies the diffusion equation

oC 2
=~ =ViC(x,y), (7)
where the diffusion constant is unity in our unit. The gas density at infinity is kept
constant to be 7. Instead of the Monte Carlo simulation on a discrete lattice gas, we
here solve the diffusion equation (7) with boundary conditions determined by the
surface kinetics, and study the growth of a square-shaped crystal.

The main contributionto the surface kinetics is the (one-dimensional) nucleation
process on a flat edge of the square crystal. An isolated solid atom on the flat edge
is unstable due to a large positive energy cost of € — ;. A stable critical nucleus is
a cluster consisting of two neighboring solid atoms. Once a critical nucleus is
formed, further spreading costs no energy and a layer growth on the edge takes place
quickly. To obtain an explicit expression of the boundary condition for the density
field C, we consider asquare crystal of a linear dimension 2a and surrounded by four
lines x =*a and y = ta. In a unit time interval, a flux of an isolated atom, 4C(a, y)P,,
crystallizes on an edge site (a, y) with P, =[1 + exp((e — u,)/T)]!. Here the factor
4 comes from our choice of the time unit. This isolated solid atom is easy to be
evaporated and has only a very short lifetime:

T,y = —1—[1 + exp((u - 8)/ T)] ~ —1—
ev 4 s 4
Butifone of the neighboring site is crystallized before the isolated atom evaporates,
a stable solid nucleus of size two is formed. The conditional probability of the
formation of this stable critical nucleus is t,,"4C(a, y£ 1)P, with P, = (1 + exp(—p/
7))~!. Due to the thermal fluctuation there is a probability of evaporation to break
this nucleus; t,,/4(1 — P;). The net flux of the formation of a stable nucleus of size
2, which contribute the layer growth, is then obtained as 16C(a, y){C(a, y*1) —
g eq} PaPp, Where ng ., = Py/(1 — Pp) = exp(—ug/T) is the equilibrium gas density,
already defined. By summing up the whole possible positions of crystallization on
the edge, the total probability of forming a minimum stable nucleus is obtained as
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16P,P,z,, éc(a y){C(a y=1)—n, eq}+21)C(a y){C(a y+1)-n, eq} (8)

The growth rate determined by the surface kinetics is thus approximately written as

a-1

Vg =321,,P,P, %{C(a y)—ng eq}{C(a y+ 1)—ng eq} 9)

Here we have assumed n,,, << C(a, y).

In the steady state, gas atoms consumed by the nucleation and growth should
be supplied through the diffusion in the bulk of the gas phase. The surface kinetics
rate Vg should be balanced with the diffusional rate V', as Vi = Vp=V//3 , where
V is the growth rate in the diagonal direction. The mass deficiency produced per
time {1 — C(a, y)}Vp should be transported via the diffusional flow, which is
proportional to the normal gradient at the interface 0C/on;

ac

{1-C(a y)}¥, = .

(10)

Since C(a, y) is very small, we may replace the coefficient on the left-hand side to
be unity. Thus, on the edge, x = a(¢), the conservation equation is written as

a-1
) 520,88 S0l a y)-ny el aye)-ne,) (D)
y=0
_ ot xy) (12)
ox x=a(r)

5.2 Scaling of size and velocity

Before describing the numerical solution of the diffusion equation (7), with
boundary conditions Egs. (11) and (12), we look into the scaling properties of
fundamental equations.

The characteristic time and length are the nucleation time

-1
Toue = [32 TevPan (ng “Hg o )] (13)

andthe corresponding length /= ./ Dz, withD=1.Interms of dimensionless time
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and length defined by
t=Tyut', r=Ir and a=la, (14)
the dimensionless diffusion field
C-
ue—_Meeq (15)
Ng ~Ngeq
satisfies the diffusion equation
M:V/z u(t//x/}yl)/ (16)
ot
with boundary conditions
u(R=o0)=1 (17)
au a’(t’) ! ! ! ! ! !’ ! ! _l !
gx,za,(,,) = .[0 u(t,a'(t),y )u(t ,a(t),y +l )dy (18)
L 19)
Ng =Ny o, dl’

In Eq. (18), we transform the summation to an integration. For a slowly growing
crystal with pg << g or with small /!, we can neglect the /-dependence of the in-
tegrand in Eq. (18). For p, >> T, the equilibrium gas density n,, is much smaller
than n, and is negligible. Then the dimensionless variables, # and a’depend no more
on g or T.

When a crystal grows, it can not keep growing indefinitely in a square form
(18). There is a certain limit in a size, L,,,. The following two criteria are con-
ceivable for the stability limit of the square crystal.

When the gas density on some edge position becomes lower than the equilib-
rium gas density, a crystal can not maintain a square shape since the evaporation
forbids that position to grow. This takes place at the center of the edge where the
gas density is minimum among the whole edge sites. Therefore, the first criterion
to determine the maximum linear size L', (!’ (in the reduced unit) is

Cl1: u(L’(l) 0) - u(o,pf;gx): 0. (20)

max /
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The second criterion represents the effect of kinetic roughening, such that the
successive nucleation takes place faster than the completion of a layer growth. Since
a crystallization probability per trial at a kink site is {C(a, y) — ng o4} P, the mean
time spent until an atom crystallizes at the kink site is [4{C(t, a, j) — ng o4} Pp] .
Therefore, the spreading time of a single layer after a stable cluster of a size 2 is
nucleated at the corner (a, a) is obtained to be

a-2 1 ( )
TS r = y 21
g j=o4{C("“'f)_”g'eq}Pb

If the spreading time, t,,,, is comparable to or longer than the nucleation time,

-1
a-1

321,,P,P, z(){c(z,a, V)= ng e f{Cay+1)=ng .} (22)
=

the interface can not be kept atomically flat. Thus the second criterion determines
the maximum size L ’,,,,® in the reduced unit from

(2) (2)
C2: J'OL max_‘iX.IOL max u(y)u(y+l/l)dy: 4Pb ~ 4, (23)
u

The first criterion C1 represents that the low-density central portion will be left
behind from the growth, whereas the second criterion C2 represents that the growth
originating from various positions on an edge leads to an uncorrelated interface.
From C1 or C2, one can determine L ", (V) or L’,,,®, which are independent of
and 7. In the physical unit, then, the maximum sizes of a square crystal L,,, (-2 are
obtained as

1
KO = L)oo aw)./27), e

and the growth rates at the maximum size V,(D-? are given as

p()(2) - da'
s dt,

~dexp((Au—€)/2T) (25)

1= 7 0(2)
a _L max

Since the coefficients, L'\)-(?) and d 'a/dt’,depend on ng, the n,-dependence of £{)(2)
and V()@ can not be represented in a scaling form.
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5.3 Method of numerical solution

We now solve the diffusion equation (7) with boundary conditions, Egs. (11)
and (12) numerically, and compare the n,-, j1/7- and ¢-dependence of growth rate
¥, the stability limit L ,,, and the concentration field with the scaling behaviors. The
algorithm to be used is an explicit finite difference scheme (19). The space is
divided into small grids, even though the crystal interface at (x, a(?)) or (a(?), y) is
not restricted on the grid points. On an i-th grid point outside of the crystal, a
continuous value of a diffusion field Cy(¢) is assigned. The growth rate ;(¢) is
calculated from the concentration field on the boundary grid points using Eq. (11).
Then, we get the new interface position a(z + Af). Now, by solving the diffusion
equation, we obtain new values of the diffusion field Ci(t + Af) except on the
boundary points just contiguous to the crystal. The values of C(¢ + A¢) on the
boundary are obtained from the continuity condition Eq. (12) as C{(t + Af) = Cy5(¢
+ At) — 4(2)-3. Here (i +8)-th site is the nearest position to the i-th site and belongs
to the interior of the gas phase. These procedures complete the renewal of the
diffusion field at a time # + Az. Returning to the calculation of the velocity 4 (¢ + Af),
we can continue the iteration. The stability criterion C1 and C2 are judged in the
iteration.

An initial condition is chosen to be the same with the Monte Carlo simulation,
while outer boundary condition (i.€. C(R= ) =n,) is improved such that the particle
reservoir (i.e. the region with constant gas density n,) is shifted outwardly when the
density at some point in front of this region is depressed less than 99.5% of the
prescribed value, n,.

5.4 Results of numerical solution

For a fixed gas density, n, = 0.5, the concentration field at various chemical
potentials i is found to be scaled as C(r; pg) = ¢ (F/Lpax") (see Fig. 6). The
maximum size L,,(!) determined with the criterion C1 is found to be proportional
to exp((e — Ap)/27), as is expected in Eq. (24) and is plotted in Fig. 5a. Here
In(L,,?) determined with the criterion C2 and In(L,,,,) of the Monte Carlo
simulation are also plotted. The L,,’s derived from Monte Carlo simulation lie
between L,V and L., the former being always larger than the latter.

If we fix a chemical potential p, = 10, but vary n, from 0.2 to 1.0, we observe
acomplicated variation of concentration field, especially inits orientation dependence
(Fig. 7). The concentration field looks isotropic at low n,, while at a high n, (20.6)
concentration field become anisotropic and lies parallel to the interface as is shown
inFig. 7. Therefore, we cannot expect a scaling behavior in a concentration field as
a function of the gas density. The dependence of L, (" and L, on the gas
density n, is shown in Fig. 5b. Here also Ly, lies between Ly, (1) and L;,,* One
thing to be noted is that L,,,,,(!) increase drastically as n, approaches unity. The reason
of this peculiar behavior may be that since there are plenty of gas atoms, the density
at the center of the edge can not easily vanish any more. In these situations C2 may
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Fig. 6. Contours of constant gas density around the square crystal at the stability limit decided by
criterion C1, with n, = 0.5 and at (a) uy/7 = 5.0, and at (b) py/T = 9.0.
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Lmas™ = 47

(b)

Lmazt = 26

Fig. 7. Contours of constant gas density around the square crystal at the stability limit decided by
criterion C1 at py/7 = 10.0 and with (a) n, = 0.2 and with (b) n, = 0.9.
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be a better criterion for determining the stability limit.

We now investigate the time evolution of the crystal size. For a fixed gas
density n, = 0.5, the time evolution of the scaled crystal size a " at various chemical
potential, i, is plotted as a function of the scaled time ¢’ in Fig. 8. Except the initial
transient, one observes the universal scaling for u/7 < 10.0. Even though a is not
proportional to the time, the diagonal length /7 a() agrees with early part of the tip
separation () obtained by the Monte Carlo simulation (Fig. 9a). After the shape
instability, the crystal turns into dendritic form but the tip grows steadily with the
same velocity at the stability limit. The concentration field around the tip thus
should remain the same with that of the square crystal at the stability limit. For n,
higher than 0.6, a(?) deviates significantly from r,(¢) (Fig. 9b). This may indicate
that the crystal growth at n, > 0.6 is no longer controlled by surface kinetics.

0 20 40 , 60 80
t

Fig. 8. Time evolution of the scaled crystal size a(¢’) for various /T at n, = 0.5 and 7.J = 0.3.

The (¢ — )/ T dependence of Vand V(D= /3 ; at the stability limit, a = L,,,(",

is shown in Fig. 3a. Here the growth rate V@ = /35 at a = L,,,, is also plotted

for comparison. Both V() and V,( satisfy the relation Eq. (25). From this figure one
clearly finds that V agrees V(I for (¢ — p,)/T < 6. For (g — p,)/T> 6, the simulation
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Fig. 9. Comparison of the time evolution of a tip separation ry; of the crystal from the origin obtained
by the Monte Carlo simulation (plotted by symbol +) and from the single nucleation theory (a thick
solid line) at (a) uy/T = 7.0 and n, = 0.5, and at (b) puy/7 = 10.0 and n, = 0.8.

data with the boundary condition B.C.2 lie higher than V(). This point will be
discussed in the next section. The dependence of V1), ¥ and V on gas density,
ny, is plotted in Fig. 3b. Atalow density 1, <0.5, ¥"and V() show good agreement,
while for n, higher than 0.6, ¥ deviates from V(1) and also from ¥ rapidly. The
latter behavior is compatible with the previous a(#)-ry;,(¢) relation, indicating that
the surface kinetics looses the control of the crystal growth.

6. Summary and Discussions

Crystal shapes are simulated by using a lattice gas model, which incorporates
the surface tension and surface kinetics, chemical potentials of the solid, and also
the diffusion dynamics in the gas phase. For a closed system at various tempera-
tures, equilibrium shapes obtained on a square lattice agree with the exact profiles
of the corresponding Ising model. Crystal sizes also agree with the values obtained
by minimizing the free energy. For an open system with a particle reservoir of a
fixed gas density, various growth shapes are obtained. On decreasing the energy
cost (¢ — ) in nucleating an isolated solid atom on a flat edge, growth shapes
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changes from a polygonal, to a hopper and then to a dendritic and to a fractal, and
finally to a compact structure, consecutively. Such variation is observed in a 3-
dimensional experiment of cyclohexanol crystal growth from a pure melt (20).
Crystal growth at large (e — ,)/T is characterized by the exponential dependence
of the maximum size of the polygonal crystal L, ., as L., ~ exp((e —Ap)/2T), where
Ap is the chemical potential difference between the solid and the gas phase. The (g
— Wg)/T dependence of growth rate V is inverse to that of L,,,.

In the simulation, we have obtained the (¢ — )/ T-dependence of Vas V'~ exp(—
0.29(e — ps)/T) (15). This dependence is obtained by fitting the velocity data at 11
2u/T24.For 112 p/T> 8, simulation data of ¥ agree with the numerical solution
VU of the diffusion equation, whereas for uy/T< 7, ¥ lies distinctly higher than ¥/, ()
(Fig. 3a). The data for py/T'< 7, however, are found to be influenced strongly by the
boundary condition B.C.2. Namely, if we use the boundary condition B.C.2 in the
numerical solution of diffusion equation (7), then the growth rate V() increases and
agrees with the simulation result, V. Thus, in the Monte Carlo simulation appli-
cation of the boundary condition B.C.2 might had lead too strong a boundary effect
onthe growing tip. Our conclusion now is that the true dependence of ¥ on the chemical
potential g is represented by Eq. (25) instead of the previous conclusion, Eq. (4).

In N,

region 5 , /

CRYSTAL SIZE

, / region 2
, /7 region 1

ENERGY BARRIER  (e—Au)/T

Fig. 10. Growth morphology of a crystal as a function of the crystal size, N, and the energy cost (g -
Ap)/Tto form a single atom nuclei on a flat surface at constant gas density. For detailed explanations
see the main text.
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We have introduced two criteria to decide the stability limit of the square
crystal. The criterion C1 is C(Lyay, 0) oF C(0, Lyyey) = ng .y, and the criterion C2
represents the effect of kinetic roughening. Both C1 and C2 are compatible to the
data of L,,,, as for the exponential dependence on € — Ap. As for the absolute value
of the growth rate in hopper or dendritic shape, Monte Carlo data agree better with
the growth rate determined with C1. The morphology of the hopper-like crystal
after the instability is also compatible to the stability mechanism of Cl1, that the
center of the edge stops growing due to the density depression.

Our result may be summarized in the phase diagram, Fig. 10, in the parameter
space of the energy barrier, € — Ap, and the number of crystal atoms, ;. In the region
1 a nuclei can not grow but evaporates. In the region 2 the crystal grows, keeping
a polygonal shape. The region 3 is the transition region from a polygonal to a
hopper-like shape. Inregion 4 a crystal takes a dendritic form. Inregion 5 the crystal
grows without energy barrier. The growth is limited by the gas diffusion, and the
crystal acquires a dendritic, a fractal or a compact structure, depending on the gas
density, n,, and on the length scale (17). Region 1 is bounded to the left by Eq. (3),
and region 5 by € = Ap to the right. Region 3 is bounded from region 2 by L, ., ®
given by Eq. (24), and from region 4 by L, ().

REFERENCES

(1) Langer, J. S. (1980), Rev. Mod. Phys., B52, 1.

(2) Yokoyama, E. and Kuroda, T. (1990), Phys. Rev., A41, 2038.

(3) Trivedi, R. (1984), Metal. Trans., B15A, 977.

(4) Huang, S. C. and Glicksman, M. E. (1981), Acta Metall., B29, 701, and ibid, B29, 717.
(5) Witten, T. A. and Sander, L. M. (1981), Phys. Rev. Lett., 47, 1400.

(6) Witten, T. A. and Sander, L. M. (1983), Phys. Rev., B27, 5686.

(7) Karma, A. (1986), Phys. Rev. Lett., 57, 858.

(8) Karma, A. (1986), Phys. Rev., B34, 4353.

(9) Dombre, T. and Hakim, V. (1987), Phys. Rev., A36, 2811.

(10) Ben Amar, M. and Moussallam, B. (1988), Phys. Rev. Lett., 60, 317.

(11) Saito, Y., Misbah, C., and Miiller-Krumbhaar, H. (1989), Phys. Rev. Lett., 63, 2377.
(12) Rottman, C. and Wortis, M. (1984), Phys. Rev., B29, 328.

(13) Akutsu, Y. and Akutsu, N. (1987), J. Phys. Soc. Jpn., 56, 9.

(14) Rottman, C. and Wortis, M. (1981), Phys. Rev., B24, 6274.

(15) Saito, Y. and Ueta, T. (1989), Phys. Rev., A40, 3408.

(16) Waulff, G., Kristallogr, Z. (1901), Miner., 34, 449.

(17) Uwaha, M. and Saito, Y. (1989), Phys. Rev., A40, 4716.

(18) Chernov, A. A. (1974), J. Crystal Growth, 24/25, 11.

(19) Wilcox, W. R. (1977), J. Crystal Growth, 37, 229.

(20) Ovsienko, R. E., Alfintsev, A., and Maslow, V. V., (1974), J. Crystal Growth, 26, 233.



