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Abstract. A statistical-mechanical approach is developed to extract more detailed
information from multifractal patterns. The analogy with spin systems is empha-
sized. The fla) formalism proposed by Halsey ez al. (Phys. Rev., A33, 1141, 1986)
is generalized by introducing an “external field” to remove the degeneracy in flo)
and to obtain the complete spectrum of the singularities in the multifractal patterns.
It is also seen that “phase transition” can occur under an appropriate condition. We
take into account conserved quantities to analyze the pattern including lacunae.
Some perspective are discussed as well.

1. Introduction

Multifractal sets (Mandelbrot, 1974; Hentschel and Procaccia, 1983) have
been vigorously investigated as a common notion in many physical object such as
strange attractors in chaotic systems (Cvitanovic etal., 1985; Feigenbaumet al., 1986;
Jensen et al., 1987; Katzen and Procaccia, 1987; Bohr and Jensen, 1987; Sato and
Honda, 1990), fractal clusters in growth processes (Halsey et al., 1986; Matsushita
et al., 1987; Hayakawa et al., 1987; Ohta and Honjo, 1988), velocity distributions
in turbulence (Benzi et al., 1984; Meneveau and Sreenivasan, 1987), energy
spectrum in quasicrystals (Kohmoto ef al., 1987) and so forth (de Arcangels et al.,
1986; Bene and Szepfalusy, 1988).

Letus consider a set which is covered by N(/) boxes with a size of order /. Each
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box is assigned to a respective measure P(/) (i =1, 2, ..., N(/)). For growing fractal
patterns, for example, harmonic measures on the growth surface can be regarded as
the probability measure. The generalized dimension D, for any real g is defined by
(Hentschel and Procaccia, 1983)

D zlilenZ—,(q), (1)
7 150g-1 Inl

where the partition function Z(q) is given by
2(a)= S [RO)]" @

D, is equal to the Hausdorff or fractal dimension of the set itself (support of the
measure), which is also obtained by averaging the measures over the set and putting
P(l) = 1/N(J). Halsey et al. (1986) clarified that the generalized dimension D, are
closely related to the spectrum f{a) of singularities, which characterizes the
multifractal set: Suppose that the measure of the i-th box follows the power law as

Pl) ~ j=, and the number of boxes with q; taking on a value between a and o +

dais p(a)A®da. The quantity f{a) is a fractal dimension of the interwoven subsets
with the singularity a.. The sum in Eq. (2) is then replaced by the integral

Z,(g) = I dap(a) /). (3)
Since / is very small, a steepest descent method is applied to obtain
Z,(q) ~ 1999-1(ela), (4)

o(g) minimizes the exponent ga. — flo) with respect to a;

df(a)

LG p— (5
da la-a(y) !

%w. (6)

From Egs. (1) and (4) we obtain 1(q) defined by t(¢) = (¢ — 1)D, as
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t(q) = qa(q)- f(a(q)) (7)

The Legendre transformation of t(g) leads to the f{ct) spectrum;

a(q)= 1) ®

dgq

f(g)=qa(q)-(q) )

by making use of ¢ as a parameter.

As reviewed briefly in Section 2, the multifractal patterns can be analyzed in
the formalism of statistical mechanics by redefining partition processes. It is seen
that the partition function ZJ(g) in Eq. (2) has the same form as those for one-
dimensional classical spin systems in equilibrium. Each divided part of the
multifractal pattern is assigned to one of the spin configurations. Using well known
technique for the spin systems, we can develop the method for analyzing the
multifractal patterns and acquire some perspective as well.

In a usual scenario of obtaining f{ct) experimentally (Ohta and Honjo, 1988;
Glazier et al., 1988; Atmanspacher et al., 1988) or numerically (Hayakawa et al.,
1987) generated multifractal patterns, we first calculate Z(g) in Eq. (2) and then
evaluate 1(q) from the slope of log-log plots of Z(g) versus box-size /. The nu-
merical derivative of t(g) gives a(q) from Eq. (8), and then f{g) from Eq. (9). The
transfer matrix method (Feigenbaum et al., 1986; Jensen et al., 1987; Katzen and
Procaccia, 1987;Feigenbaum, 1987) using what is called daughter-to-mother ratio
as a scaling function also follows the same procedure, though t(q) or its inverse
function g(t) can be ingeniously obtained. Generally speaking, however, there
exists in the conventional method described above such a serious shortcoming that
most of the original singularities in the multifractal patterns cannot be extracted. We
call them hidden singularities. In Sections 3 and 4 we consider simple models to
illustrate the hidden singularities, which will be elucidated to arise from the
“degeneracy in energy”’.

In Section 5 we introduce an order parameter to propose “phase transitions”
associated with the generalized dimension D, or the singularity spectrum f{a) in the
multifractal patterns. To generate such patterns we use Husimi-Temperly model for
1d Ising system. If, in the division process, there exist weak correlations among any
steps, the phase transition can occur. Critical properties in patterns are very
interesting to be studied.

Many multifractal patterns in nature include lacunae within themselves. To
analyze these, we have to remove vacant parts from the sum in Eq. (2). In Section
6 we give a simple method with use of the conservation law, which will provide a
basic concept as in other fields of physics.
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The last section is devoted to discuss some generalization and to summarize
the present paper, a part of which has been already presented by Honda (1989).

2. Statistical Mechanics Formalism

Let us consider a one-dimensional multifractal pattern at the n-th level of re-
finement covered by k" (k; a positive integer) boxes of length / = k. Extension to
higher dimensions is straightforward as discussed in Section 7. Each box of the
pattern is addressed by {s}, = (s1, 52, ..., 5,,), where s; takes on values 5;,= 1, 2, ...,
k. In the case for k= n = 2, for example, the address of a respective quarter is given
in turn from left to right as (1, 1),(1, 2),(2, 1) and (2, 2). The measure of the i-th box
Pi(l)isreexpressed as P({s},). Whena “Hamiltonian” is defined by the information,

H(fs},) = -tur({s), ), (10

we have the partition function in the same form as in the statistical physics;

Z,(q)= {z;exp[—qﬂ({s},,)} (1)

The subscript # has been used in place of /. The quantity g corresponds to the inverse
temperature f3, although it takes on values —0 < g < 0. 1(g) is given by

1(q)=-lim n"'InZ,(q) / Ink. (12)

n—>0

Suppose that the “Hamiltonian” has continuous energy spectrum E. Then the
partition function is calculated as

Z,(q) =1 dEQ(E)e ™, (13)

where Q(E) is the density of states. Since the energy E and the entropy S(E) = In
Q)(E) become larger in proportion to n, we can apply the steepest descent method
for large n to Eq. (13) yielding

Z, = exp[S(E*) - qE*], (14)

where E* is a function of ¢ satisfying
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dS(E)
dE

=q. (15)

E=E

In addition E* is obviously equal to the averaged energy

(E)= z,,(q>‘1{ } H({s}, )exp[-qH({s}, )] (16)

__ anz,(q)
q

We can then identify a “free energy” with

F(g)=E"-q"'S(E") (17)

From these analysis the well known thermodynamic formalism for the multifractal
patterns can be derived straightforwardly. Comparing Egs. (2) ~ (9) with Egs. (11)
~(17), we immediately see the following relations, aside from a trivial coefficient,
Ink,

a(q)=(E)/n,
fla)=S(E)/n, (18)

(q) = qF(q) / n.

We will apply this formalism in the following sections. It should be noted in
particular that Eq. (10) is the Hamiltonian of 1d Ising spin system with £ states.
Generally it should consist of terms proportional to #, which guarantees the scaling
property of Z,(q) in Eq. (11).

3. Hidden Singularities

In orderto illustrate the hidden singularities mentioned briefly in Section 1, we
study the simplest but nontrivial case, a series of trisection of the segment [0, 1] as
shown in Fig. 1. At each stage of division, the measures py, py, p3 (01 +p2 tp3=1)
are assigned to the segments in turn from left to right, respectively. To avoid
confusing complexity (Halsey et al., 1988; Kohmoto, 1988), the lengths of three
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Fig. 1. A series of trisection of the segment [0, 1] with three measures rescaling p| =1/2, p» =1/3 and p3
=1/6. The division of the set continuous self-similarly.

segments are assumed to be equal to each other. More general cases will be
discussed in Section 7. At the n-th step, the length of division is / = 37 The usual
scenario to obtain the singularity spectrum flo) is as follows: Let us denote the
measure of the box which takes p; by m; times (i = 1, 2, 3) at the n-th step (m; + m,
+ my = n) as P(m,, my, m3), which is

P(my,my,my) = p" py" p3". (19)
The number of those boxes is obviously given by
C,(my,my,my)=n1/(my my ! my1). (20)

Hence we have the partition function at the n-th step

Zn(q)=ZZZCn(mwmzfms)[P(mllmz/ms)]q' (21)

m m, my

These three sums are carried out under the condition, m| + m, + m; = n. The sub-
stitution of Egs. (19) and (20) into Eq. (21) immediately yields
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Z,(a)=(pf +pd+p1). (22)

Using Eqgs. (8), (9) and (12), we find

a(q) = —(vllnpl +v,1np, +v;Inp, ) /In3, (23)

f(g)=—=(wlnv, + vylnv, +v;lnv,) / In3, (24)
where

v=p! /(P +pE+pl) (1=1,23), (25)

are functions of only one variable ¢g. Then Egs. (23) and (24) give the o) curve, as
shown illustratively by a solid line in Fig. 2 for the case of p; = 1/2, p, = 1/3, p3 =
1/6.

We apply the formalism described in Section 2 to the case. Its process of
refinement is markovian

08 -

06 -
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06 08 1.0 12 14 16

Fig. 2. The plot of f'vs. a. for the set in Fig. 1. Dots represent the singularities generated by Eqgs. (31)
and (33). Respective thin line corresponds to ;=0 (i = 1, 2, 3) in Egs. (31) and (33), while an
envelope bold line represents the f~o curve obtained from Eqs. (23) and (24).
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P(fs},) =]

Jj=1

Py - (26)

Here s; takes on ternary values 1, 2 or 3. Hence the Hamiltonian H({s},) can be
expressed as the sum of individual ones

h(s;)=~Inp, , (27)
which can be described generally in term of s; as

h(sj)zasjz- +bs; +c, (28)

by making use of appropriate coefficients a, b and c. Substituting Eqgs. (26) and (27)
into Eq. (10) and using it in Eq. (11), we get

Z,(q)= {e_qh(l) +e ) e_qhm}n , (29)

which is equivalent to Eq. (22).
On the other hand, the direct approach to extract the singularity spectrum is
also possible as follows: The measure given in Eq. (19) shows a scaling

P(ml,mz,m3)=[a(’wrz"’z) (30)
with the exponent
a(rl,rz,r3)=—(rllnp1 +1rInp, +r3lnp3)/ln3. (31)

Here we have used the respective ratio r;=m;/n (i=1,2,3; r; +r, +r3;=1). Using
Stirling approximation for large », the number of boxes C,,(m, m,, m3) is also found
to obey the scaling law

C,(my,my, my) ~ i) (32)
where

f(nom.m5)=~(rlnr +rlnr +rlns)/ In3. (33)
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Equations (31) and (33) represent a region in the /-« plane, because the parameters
71, 1, r3 move under the restrictions that 0 <r|, rp, /3 <1 and r; +r, + 3= 1. The
region for the above case is shown by dots in Fig. 2. This argument clearly indicates
the fact that the usual scenario may miss the singularities corresponding to the inner
part of the fla) curve. They are the hidden singularities.

Returning to the statistical mechanics formalism, we notice that <h(s;)>= a(g)
consists inherently of independent quantities <s> and <s*>, so that a number of
states giving different 1(q) or flo(g)) with the same o(q) can exist. In order to re-
move the degeneracy in the energy, we introduce an additional field 7 conjugate to
an order parameter \¥({s},), and add the term, n'¥({s},), into the exponent in Eq.
(11). The form of W({s},) is not necessarily specified for our purpose, if it is
independent of the energy H({s},) and extensive. The latter condition assures the
scaling of the partition function. We adopt here the simplest case \({s},) = Z(s,—
2). As is easily seen, i and ¥ correspond, respectively, to magnetic field and
magnetization in the 3-state Ising system. Hence we have, in place of Eq. (11),

Z,(¢,m)= gexp[—qH({s},,)— n¥({s},)] (34)

Following the procedures familiar in statistical physics, we obtain

falg,n), w(g n))=qa(g, n)+ny(q,n)- (g, n), (39)

where use was made of the relations

#(¢,n) =~ lim n"'InZ, (g, ), (36)
a(gq,n)=2x(q.n)/ oq, (37)
w(q,n)=<¥({s},)>/n=ox(q,n)/ on. (38)

Substituting Eq. (34) into Egs. (35) ~ (38) and using Eq. (27), we finally obtain
a(g,n)=h(V)u, + h(2)u, + h(3)us, (39)

£(g,m) = —(uInu; +uylnu, +uslnusy), (40)

where u;s are defined respectively by
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e~ h(i)-n(i-2)
i g, o—ah(2) | o-gh(3)-n (41)

u

They move in the same region of values as r;s appeared in Egs. (31) and (33). The
singularity spectrum f{@) is generalized into a function f{c, y) both of a and y.

We have thus succeeded to recover Egs. (31) and (33), aside from a trivial
coefficient In3, by introducing a new pair of thermodynamic variables. The Eq. (22)
or (29) corresponds to the case 1= 0. Since f{a(g, 0), w(g, 0)) = fla(g, n), w(g, n),
owing to the relations df/0y = 1 = 0 and 0%/0y? < 0, the border in Fig. 2 is given
by Egs. (23) and (24).

4. Correlated Multifractal Patterns

From the arguments in Section 3 we can easily forecast that the hidden
singularities can appear in more general cases. The hidden singularities arise from
the degeneracy of states with the same energy. This situation can occur even when
the refinement processes are binomial, where s, takes on values £1. If the process
is non-markovian and has a memory of the previous one step, for simplicity, the
measure is expressed as

P({S}n)zlzlpl(si)l;IPZ(si Sm) (42)

Hence we define a generalized partition function

Z,(¢ n)= %[a(si)]”[P({s}n)]q (43)

Normalization condition requires Z,(1, 0) = 1. From Eq. (10) the corresponding
Hamiltonian is given by, which use of a coupling constant J between nearest
neighboring spins and an external field 4,

H({s}")=—JZsis,-+| —th,» (44)

except for a normalization constant. In Fig. 3 we show the patterns constructed by
printing dots in proportion to exp[—H({s} )] into the respective slit with of 2, which
corresponds to one of the spin configurations. The partition function via an easy
exercise is
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J =20.0 H=20.5

(a)

(b)

Fig. 3. One-dimensional multifractal patterns generated by the “Hamiltonian” Eq. (44). A number of
points in a respective slit with a width of 1/1024 is proportional to exp[-H({s},)].

n

e*cosh(q + n)h + (ez‘”cosh2 (g+n)h- 25inh2qJ)1/2
e’coshh + (e“coshzh - 2sinh2J)1/2

Z,(qn)= (45)

The denominator is required due to the normalization. We here note that the system
represented by the Hamiltonian Eq. (44) has two extensive quantities, that is, the
energy a = <H({s},)>/n and the magnetization y = <Z;>/n. The two are inde-
pendent of each other. As discussed in Section 3, therefore, there exist hidden
singularities in the pattern in Fig. 3(c) as well. The singularity spectrum fla, y) is
obtained by using Egs. (35) ~ (38) such as

Slo,y)=[-(1/2J)(& +hy)n(& +hy)+(1/47)E,In|E, |
+(1/40)E In|é_|+(1/2)(1+ y)n(1+ y) (46)

+(1/2)(1= w)in(1- y)+1n2J] /2,
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where

£=(a-ay)n2, (47)
E,=E+hy-2J(1ty), (48)
oy = [—J+ ln{ejcoshh + (ezjcoshzh - 2sinh2J)1/2 ” / In2. (49)

InFig. 4 we show fla, ), which is defined on the triangle surrounded by three lines,
E+hy—-2J(1+w)=0,E+ hy=0. It resembles a sunshade cramped on the latter
line and at a point (2J + ln2, 0).

Fig. 4. Three dimensional pictures of f{a, w) in Eq. (46), which stand on the triangle surrounded by three
lines and cramped at a point and on a line.

Before closing this section, let us discuss the method for analyzing the patterns
obtained experimentally or generated numerically. We use the daughter-to-mother
ratio defined by
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3 P(sl,s2, cees s,,)
O-(SIISZ} v Sn)_ P(SI’SZ’ veuy Sn—l)‘ (50)

Since the measure is expressed as

P({s}n)= I’j] o'(sl,sz, e sj), (51)

J

the Hamiltonian is given as a sum of In os. If the ratio for large n depend only on
the last spin s;, the partition can be divided in a markov type. When the ratio depends
only on the last two spins, s; and s;_;, we have a Hamiltonian equivalent to Eq. (44).
Whenever above conditions are fortunately satisfied, we can analyze the multifractal
patterns rigorously.

5. Phase Transition in Multifractal Patterns

Critical phenomena have attracted many investigators to study their anoma-
lous behaviors and their universal properties. In analyzing multifractal patterns, it
is also of interest to introduce the concept of phase transitions. Since the refinement
processes of the patterns are sequential, corresponding spin systems are in one-
dimensional space, where, as is well known, phase transitions are absent. Only one
exception is the case that the interaction between spins is very weak and long range,
the Hamiltonian of which is given by

n n
H({s}n) =—(J/2n)). Zsisj. (52)
i j#i
This is the Husimi-Temperly model, where a molecular field approximation gives
rigorous results. The coupling constant is so weak that the expectation value

<H({s},)>is extensive and proportional to n. Substituting Eq. (52) into Eq. (11) and
following the usual scenario we easily obtain for 0 <J <1

t(q) = [(1 +m (14 m*)+ (1=m* Jin(1-m* )~ qJ +2(g - l)ln2]/(2ln2), (53)
a(g) =[~Jm™ +2mn2]/ (21n2), (54)

f(q)= [—(1 +m*)in(1+m") = (1= m" )in(1-m" )+ 21n2] /(2In2), (55)
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where m* is the order parameter determined by the self-consistent equation

(1/Z)In[(l+m*)/(1—m*)]=qu*‘ (56)

1t is well known that Eq. (56) has a trivial solution m* = 0 for g < g, (=/ '), while

1.0
08
06
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02 |-
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l q

| | 1 |

2 3 4 5

Fig. 5. Plots of D, a(g) and f{g) as a function of q for the multifractal pattern generated by Eq. (52). It
is noted that the second derivative of D, is discontinuous at the transition point g, = 2. Both D,
and a(q) approach a same value in the g — oo limit.

Fig. 6. Plotf'vs. a represented by Eqs. (54) and (55) for the case of J = 0.5. Note that points for ¢ < g..
=2 are accumulated at (1, 1).
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for g > g, m* increases with increasing g, starting from zero at g, with a critical
exponent 1/2. In Fig. 5 we give D, a(q) and flg) showing anomalous derivative at
g.. In particular a singular behavior of f{a) should be noted as shown in Fig. 6, where
the points for ¢ < ¢, (that is, m* = 0) are accumulated at a point (1, 1).

The above argument leads us to the following; The phase transition in a
multifractal pattern can occur if only if there exist infinitely long memories in the
refinement process. It seems a cock-and-bull story to introduce the phase transition.
Nevertheless, we believe that such a novel concept may play an effective role in
characterizing the pattern in the future. In particular, the scaling relations and
universal properties are very interesting to be studied.

6. Conservation Law in Multifractal Patterns

All cases discussed above have a fractal dimension D of support identical with
the space dimension d embedding the pattern. However, there exist many lacunae
with size of hierarchical order in patterns of nature. To calculate the partition
function for these cases, we have to exclude terms corresponding to the vacant parts.
Mathematically, it is often difficult to carry out the summation under such a
condition. We here propose a method to this end through introducing the conservation
law.

In this case for Dy = d, the whole space of the spin configurations can be
occupied. On the other hand, let us imagine that there exist some conservation laws
in the spin system. Some parts of the spin configuration, corresponding to voids in
the pattern, are forbidden to be occupied, unless they fulfill the conditions. We
consider here the simplest case, where the magnetization X;s, is constrained to take
on the value mn and the Hamiltonian is expressed by Eq. (44). Such patterns are
shown in Fig. 7. Then we have to calculate the partition function

q

Z,(q)= {Z};exp[—qH({s}n)]/ {Z}:exp[—H({s}n)] , (57)

where the sum is performed under the condition 2;5,/n = m. Instead of practicing this,
it is convenient to introduce the partition function for the “grand canonical
ensemble” such as

E,(¢.n)= ZeXp{nzsi}xp[—qH({s}n)]f (58)

{sh,

which yields easily
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(e)

Fig. 7. One-dimensional multifractal patterns with a conserved quantity, ;5= nm. Empty parts cor-
respond to inhibited spin configurations. Each slit is 1/1024 in width. Note Figs. 7b and 7c are
equivalent to each other.

Z,(9.m)= [e‘”cosh(n +qh)+ {ez‘”coshZ(n +qh)- 2sinh2qJ}l/2} . (59)

The familiar method of Legendre transformation leads to the wanted partition
function Z,(q) as follows:

n'InZ,(q)=-n(q,m)m+n"'Ing, (q, n(q. m)) (60)

—q{— n(L,m)m+n""n=(1, n(1, m))},
where 71(g, m) is an inverse function of
m=n""6nZ,(q,n)/ n. (61)

Substituting Eq. (60) into Egs. (8), (9) and (12), we can obtain t(g), o(g) and f{g).
We give here only f{a) as
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S(@)=[~(1/2J)émn& +(1/ 47){& = 2J(1 = m)}In[é - 2J(1 - m)|
+(1/47){& = 2J(1+m)}In|& = 2J(1+ m)| (62)
+(1/2)(1+m)ln(1+m)+(1/2)(1 = m)in(1- m)+1n2J]/ In2,
where

£=(a-ag)n2, (0<&<2J(1-|ml), (63)
oy = {ln[e"“ + (1 -m*+ mze_“)l/z}
—mln[{me_u +(l—m2 +m2e“4j)l/2 }(1 +m)} (64)

~(1/2)(1+m)In(1+ m)~(1/2)(1 - m)ln(1 —~ m)} / In2.

As shown in Fig. 8, it is noted that f{a) is finite in the o — o, (¢ = —o0) limit for

m # 0 and an even function of m due to the left-right symmetry of Fig. 7. It is noted,

moreover, that f{a) in Fig. 8 is a section of f{a, w) in Fig. 4 by w = m plane.
Conservation law plays a basis role in studying the system in many fields of

08

0.4

02

Fig. 8. Plot of fvs. a represented by Eq. (63) for the cases of (a) m = 0 and (b) m = +0.2.
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physics. We expect it to play similar roles in the problem of characterizing patterns.
7. Discusslons and Summary

In the present paper, we have taken into account as simple as possible without
loss of validity. In this section some generalizations are discussed.

7.1 Higher dimensions

We first divided a d-dimensional cube covering the pattern into £ subcubes
with a side length 1/k. Such division continues for 7 steps. Each subcube with a side
of k" is addressed by a sequence (sy, $y, ..., §,), Where s; denotes a vector with d
components. Then we have a Hamiltonian of one-dimensional classical spin system
with a degree of freedom d. It is noted here that, if the refinement process is
markovian, the above assignment is equivalent to the Ising spins with k% states. When
the memory effect is necessary to be considered, however, there are some apparent
differences between two assignments. The partition function for 1d classical spins
can be easily calculated.

7.2 Statistics of random patterns

There are some randomness imposed on the patterns in nature. To analyze
these patterns, we have to practice an average over the distribution of the coupling
constant J and the external field /. Therefore, we get

(g n)=- lim n'<<InZ,(g n J; h)>> (65)

where <<...>> represents the configuration average with respect to J; and 4;.

7.3 Measures

We have discussed in this paper the case that measures in the multifractal
patterns are nonuniform. The case that the division lengths vary from part to part
can also be investigated along the same way. The difference appears only in the role
of ¢ replaced by 1 (Katzen and Procaccia, 1987). A number of cases may not,
however, permit to formulate them systematically if both p; and /; change together
(Kohmoto, 1988). The latter case is forced to introduce two kinds of measures,
which make analysis more complex.

In summary, we have demonstrated the possibility of the existence of hidden
singularities in multifractal patterns based on the statistical mechanics formalism.
This phenomenon should occur in widely generated cases, because the degeneracy
of the free energy cannot be broken by the energy alone. Therefore, we have to
introduce new pairs of thermodynamic variables to extract further the singularities
in the multifractal patterns.

Moreover, we have defined the familiar but novel concepts in this field. One
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of them is the phase transition. If the memory effect in the refinement process
continue weakly in infinite steps, we can expect to occur the phase transition in the
multifractal patterns. Second concept is concerned with the conservation law,
which has so far been recognized as the basic concept in physics. We expect that this
plays an essential role in analyzing patterns.
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