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Various Growing Modes of Crystal in Diffusion Field

Haruo HoNJO

College of General Education, Kyushu University,
Ropponmatsu, Fukuoka 810, Japan

Abstract. We review the experimental phase diagram of growing crystal patterns
for succinonitrile in a supercooling-anisotropy phase space. The anisotropy of the
crystal growth system is changed and various growing modes are observed. We
discuss the degree of the anisotropy of the growing modes and the relation between
regular dendrite and diffusion-limited aggregation.

1. Introduction

We have investigated the pattern formation in the diffusion field; dendrite
(Honjo and Sawada, 1982; Honjo et al., 1985) and DLA (diffusion-limited-ag-
gregation; Matsushita ez al., 1984; Honjo et al., 1986, 1987; Ohta and Honjo, 1988).
The dendrite is a regular pattern with side-branches and DLA is an irregular one
with tip-splitting phenomenon. The researches about them has been done with
simulations, theories and experiments in crystal growth, fluid dynamical system,
electrical chemical deposit system and so on (Pelce, 1981; Stanley and Ostrowsky,
1985). The important parameter discriminating dendrite and DLA is the degree of
anisotropy of the system. The dendrite needs a non-zero anisotropy and DLA has
no anisotropy.

We report the importance of the anisotropy of growing crystal and show the
phase diagram of growing patterns of succinonitrile in a supercooling-anisotropy
phase space. The growing patterns exhibit various growing behaviors such as tip-
splitting, tip-oscillating and tip-stable modes.
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2. Experiment

At the fixed supercooling in a melt growth system, the growing crystal has a
determined pattern. That is, the crystal form depends on supercooling and the form
at high supercooling is usually observed as a dendrite. Then, in order to observe
various growing forms at the fixed supercooling, we need to introduce the degree
of anisotropy to the crystal-growing system.

In Fig. 1 we show the experimental setup. The crystal cell is made quasi two
dimensionally and the thickness of the spacer d is 14 pm. The thin bottom glass
whose thickness is about 0.3 pm is scratched randomly by abrasives (the charac-
teristic length of the roughness is / (um)) and attached to a sapphire glass. The
roughness / means that the two dimensional (horizontal) roughness is of order /. The
value of /is determined from the image analysis (two dimensional Fourier spectrum
analysis) of the pictures of roughened glass. Itis expected that the glass isroughened
vertically by the same order. This glass is pasted on a current-conductive glass and
the temperature of this system is controlled by the current through the bridge circuit.
The accuracy of the controlled temperature is +0.025°C. Succinonitrile is sealed in
this thin cell. Succinonitrile is a transparent plastic crystal at room temperature and
has four-fold symmetry. The pictures of growing crystals are taken using a video
tape recorder through a microscope and a TV camera, and then processed by the
image analysis technique.
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Fig. 1. The experimental setup. Succinonitrile is sealed in the quasi-two-dimensional cell whose bottom
glass is roughened randomly. The pictures are taken using a video tape recorder.

A crystalline anisotropy is originally determined microscopically as the
strength of bonding between atmos and its value is constant. However, as long as
we pay attention to the macroscopic growing pattern and its growth direction under
the perturbations, we can introduce a as the growth directional anisotropy of the
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pattern.

Let us define a by a = d/I considering the geometry of the cell. This definition
results from the estimation as follows. In the case of [ << [, [, is the characteristic
length of the crystal such as the tip radius of curvature, a is much stronger because
very small-sized perturbations are averaged out to yield no influence to the crystal
tip stronger, and when [ ~ [, the tip is influenced very strongly by the roughness.
Furthermore, d enhances the above effect considering the vertical geometry of the
cell. As we will show later, the growth behavior depends on both supercooling and
a. We change the roughness by the three cases [ = 34, 16 and 10 um. These values
are averaged ones and each variance of the roughness is about +//2.

The thermal conductivities liquid succinonitrile at melting point and the
roughened glass are kg, = 5.32 x 10~ cal/cm-s-k (Glicksman et al., 1977) and kg =
1.44 x 1073 cal/cm-s-k (=2.7 k), respectively. The crystal tends to grow toward the
protrusions on the surface of the randomly roughened glass, which give random
perturbations to the crystal tip. The succinonitrile is first crystallized and then
melted until only one small seed is left. We vary the supercooling temperature A9
(= Ty — Tw) at any fixed a to make a phase diagram. Here Ty is the melting point
of succinonitrile (= 54.5°C) and T, is the temperature of the system. Our system of
melt growth is three dimensional in thermal diffusion.

3. Results

Let us survey the typical growing patterns according to A6 in the case of o =
0.875. For smaller A8 (0.44°C), the growing mode is tip splitting (Fig. 2(a)). We
also show a schematic picture in Fig. 2(b). The tip curvature and velocity oscillate,
and the growth direction also oscillates. The preferred growth direction is <100>.
One can see two sharp protrusions A and B in Figs. 2(a) and 2(b). A is in fresher
liquid than B and grows as the tip. The position of B grows slowly to another
direction as a sidebranch. This phenomenon is observed as tip splitting.

Because the growth direction of the tip A is not originally prefered, the tip
velocity is decelerated and the tip curvature becomes smaller, and the growth
direction recovers to <100>. On that occasion, there remains a protrusion C (Figs.
2(a) and 2(b)), which grows as a sidebranch. Consequently, this sidebranch C is
asymmetric with the tip-splitted sidebranch B, and does not develop well because
the supercooling there is reduced by the heat diffused from the tip. The global
pattern is observed as follows. The tip-splitted sidebranches are well developed,
while those on another side do not grow so well, and sidebranches of both sides are
asymmetric. We call this growth mode the asymmetric tip-splitting (ATS) mode.

When A6 is larger (1.99°C), the growing mode is still tip splitting (Fig. 3). The
growth mechanism is the same as seen in Fig. 2. However, because of the larger
supercooling, the two sharp protrusions can grow together as tips. After the tip-
splitting, each tip grows with ATS mode because the distance between the two tips
is close and the local supercooling around there is smaller. After the tips grow far
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Fig. 2(a) Growing patterns overlapped in arbitrary time interval in the case of small A8 (= 0.44°C). A
is th etip, B grows as a well-developed sidebranch, and C grows as a less-developed one. The
growing behavior is the asymmetric tip-splitting(ATS) mode.

Fig. 2(b). Overlapped schematic picture of Fig. 2(a). A, B and C are the same with Fig. 2(a).
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Fig. 3. Aurbitrary overlapped growing patterns in the case of large A0 (= 1.99°C). The characteristic
length is smaller than that in the case of Fig. 2(a) and the growing behavior is the symmetric tip-
splitting (STS) mode.

apart from each other, they repeat again the above tip-splitting. This growth mode
is characterized as the simultaneous growth of the two splitted tips. Let us call this
mode symmetric tip-splitting (STS) mode.

When A8 is increased more (2.44°C), the tip-splitting cannot occur any more
(Fig. 4(a)). The tip radius is smaller, and becomes more stable than former cases.
The averaged growth direction is <100>. The disturbance from the rough surface
of the cell brings about the tip oscillation, which causes asymmetric side branching.
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Fig. 4. The case of very large A8 (= 2.44°C). The tip grows with oscillation and tip-splitting cannot occur.
The growing behavior is the TO mode.
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Fig. 5. Phase diagram of growing patterns in supercooling-anisotropy phase space. a is the anisotropy
defined from the geometry of the cell. The tip-splitting and tip-oscillating modes are divided by
the condition p ~ I. The DLA mode exists in lower o and A8. A usual dendrite (TS mode) exists
above the TO mode.

Although the asymmetry of sidebranches is not clear in this figure, we can identify
it from the tip-oscillating growth in NH,Cl solution. We call this mode the tip-
oscillating (TO) mode.
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When A6 is much larger, the tip is very stable and the roughness causes much
less influence to the tip. The tip may grow in a stationary manner without oscillation,
and the usual dendrite in a free space may be observed. However, this decision is
difficult because the tip grows too fast. The stable tip forms a parabolic one, then
we call this mode the stable parabolic-tip (SPT) mode.

In Fig. 5, we show the phase diagram of growing patterns for three values of
the growth directional anisotropy o. With the increase of supercooling (or
anisotropy) at the fixed anisotropy (supercooling), the pattern changes from ATS
to STS and then to TO. The coexisting characteristic in these modes is tip-oscillation
behavior. For smaller anisotropy, the tip-splitting modes are added, and for larger
anisotropy the tip-oscillation is dominant.

4. Discussion

We discuss the growing situation with the various modes comparing the
characteristic length (L pm) and the roughness (I pm).

In the case of L >> I (ATS mode), we show the schematic figure of the crystal
in Fig. 6(a). There exist the small perturbations of the thermal diffuse at the interface
of the crystal because ky; is larger than kg,. By the theoretical results of dendrite
(Langer, 1980), the temperature of the interface Tj, is determined by the Gibbs-
Thomson’s condition which depends on the curvature of interface and the anisotropy
of the crystal. When T, does not depend on the curvature and the anisotropy, that
is, it is constant (= T)y; melting point), the interface has all of the solution of parabola
(Ivantsov solution, Ivantsov, 1947) and the interface is unstable. In Fig. 6(a), in spite
of L >> [, the roughness does not directly instabilize the interface with the scall of
roughness. Then, the roughness diffuses the latent heat at random direction and

solid L>Q

Fig. 6(a). Schematic figure around the crystal in the case of L >> I. L is the characteristic length of crystal
and / is the one of roughness. This figure corresponds to ATS mode of Fig. 2.
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Fig. 6(b). Schematic figure around the crystal in the case of L > /. This figure corresponds to STS mode
of Fig. 3.

Fig. 6(c). Schematic figure around the crystal in the case of L < /. This figure corresponds to TO mode
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Fig. 6(d). Tip-oscillating growth of NH,Cl dendrite. There exists a facet at the tip, which appears and
disappears.
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tends to make T;, constant. This may be reasonable considering that at the super-
cooling of this case, the tip of dendrite in a free space is a stable parabola. In other
words, the roughness decreases the anisotropy of the growth direction, and the
degree of the anisotropy of this case is much less. The number of unstable modes
is at most two, which means the tip is splitted, because the supercooling is less.
In Fig. 6(b), we show the schematic figure of STS mode (L > [). The ABis larger
than the one of ATS mode. L is smaller and the number of unstable mode is larger.
Then the unstable modes can grow together as tips. This growing mode repeats tip-
splitting and fills the two dimensional space. The global pattern may correspond to
the dense-radial pattern which is reported in electro chemical deposit (Grier et al.,
1987). This pattern is observed in the case of relatively small anisotropy, that is, in
the intermediate region among DLA and dendrite. There are mixed both the
preferred direction of the crystal and the tip-splitted direction. In Photo. 1, we also
show the photograph of the dense-radial pattern of NH,CI crystal in the solution
growth system. There coexist the directions of <100> and <110> with repeating tip-
splitting. The detail mechanism about dense-radial pattern is an open question.

Photo. 1. Dense-radial pattern growing in a supersaturated NH,Cl solution in a two-dimensional growth
cell.

In Fig. 6(c), we show the schematic figure of the case of much larger A (L <
[). The tip is influenced by the roughness then the tip-splitting does not occur but
oscillates toward the protusions of glass. The global pattern is similar to the one
observed in a free space setting aside the tip-oscillating. We can observe the tip-
oscillating growth in the NH,Cl solution in a two-dimensional space(Fig. 6(d)). In
this case, there exists an impurity in the solution and the facet at the one side of the
tip appears and disappears. This oscillation produces the asymmetric sidebranches.
However, the top of the dendrite does not usually oscillate and is a stable parabola.
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The oscillating growth needs another condition, e.g., impurity or roughness, which
works as changing the anisotropy. The Gibbs-Thomson’s boundary condition is
considered to be achieved in the thermal large perturbation (/).

Let us estimate the order of the characteristic length of our pattern /. (Fig. 4).
The averaged velocity is v = 500 um/s, the diffusion constant D = 1.16 x 10-3 cm?/
s. Hence, the diffusion length is [ = 2D/v = 460 um. The surface tensionisy = 2.14
x 1077 cal/cm?, the latent heat L = 885.1 cal/mol, the specific heat c, = 38.25 cal/
mol-K, and the melting point Ty = 327.65 K, so the capillary length is d, = yTyc,/
L2=27 A°. From the Langer-Muller-Krumbhaar (LMK) theory (Langer and Muller-
Krumbhaar, 1978a, 1978b, 1978c) the characteristic length without roughness [,
= p = (ld,/o*)12 = 7 um. Here p is the tip radius of curvature and o* = 0.0025 in
three dimensions. From Fig. 4, p ~7 um, which agrees with the above result. Strictly
speaking, the tip in the LMK theory is stable, while the tip Fig. 4 is oscillating.
Nevertheless, we can roughly estimate /. from the LMK theory. From the late
analysis considering the crystalline anisotropy of the needle crystal in a fully
nonlocal model (Barbieri et al., 1987), o* is rewritten as 0,044 in two dimensions.
Here o, is of order unity and oy is the degree of the anisotropy in capillary length
(surface tension).

From the geometry of the cell, we have defined a as d/I. This definition cor-
responds to that of Ben-Jacob et al. (1985) and neglects the effect of /. on a.. On the
other hand, the nondimensional parameter B of the simulation by Liang (1986) is
defined as Lyg?/Wvyg?. Here Lyg is the characteristic length of viscous fingering and
Wy is the width of Hele-Shaw cell. B represents the influence of the wall on the
finger width, i.e., the effective one-dimensional anisotropy. In our system, a larger
I, (smaller AB) tends to make the tip more unstable (tip splitting). On the other hand,
we can phenomenologically recognize that the tip splitting occurs because of
weaker anisotropy. Therefore, we can suppose the real growth directional anisot-
ropy experienced by the tip as o, and it is considered a decreasing function of ... [,
is larger than [, because the roughness weakens o. Couder, Gerard and Rabaud
(1986) showed experimentally that the width of a viscous finger whose tip has a
bubble, which increases the anisotropy, is smaller than the one without a bubble.
The above discussion about the relation between o and /. qualitatively explains their
results.

Moreover, a is an increasing function of the degree of the crystalline anisot-
ropy &,d/l, and kg /kg. Here, the strength of thermal perturbations in our system is
kg/ks,, which leads to the above effect on o. Therefore, the variations of growing
behaviors in our system can be recognized as the results of the competition between
the destabilizing factor /; and the stabilizing factors ¢€,d/! and ky/ky (Fig. 5).

There seems to exist a critical value of characteristic length I.*, which sepa-
rates the tip-splitting mode and the tip-oscillating mode when [ is constant. From
Figs. 3 and 5, I_* exists in the vicinity of the supercooling region of Fig. 3. When
the symmetric tip splitting occurs in Fig. 3 the tip radius of curvature p* = [.* ~ |
(16 um). This leads to the result that if /. is smaller than the spacial scale of mac-
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roscopic thermal fluctuations (J), the crystal tip grows to the thermally favorable
direction with oscillation rather than with tip splitting. The transition from one
growing mode to another seems to be continuous in our system. This results from
the variance of roughness. If a subtle experiment without the variance of roughness
is devised, the transition between growing modes may be discontinuous.

A DLA growth takes place through repeating the tip splitting irregularly, and
this phenomenon corresponds to the ATS and STS modes. The STS mode clearly
shows the crystalline anisotropy <100> direction because ~ is larger. We conjecture
that there exists the DLA mode in the region where ~ is very small, i.e., ot is small
and [, is large in the ATS mode (Fig. 5). A pattern with nonzero but small anisotropy
in DLA simulations yields the isotropic DLA mode until some cluster size (Meakin,
1986). The related discussion may be possible for the ATS and STS modes in the
crystal growth and we will continue experimental investigations on the subjects.
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