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Diffusion-Limited Aggregation and Crystal Growth

Shonosuke OHTA

Physics Department,College of General Education, Kyushu University,
Ropponmatsu, Fukuoka 810, Japan

Abstract. Dendritic growth features of the aggregation including surface diffusion
processes on two-dimensional square lattice are studied by the Monte Carlo
simulation in Laplace field. Preferred direction of the pattern growing with thick
branches transfers its anisotropy from <10> direction to <11> one depending on the
hopping parameter of surface diffusion which is represented by the ratio of
transition probability for the next nearest neighbor surface site to that for the nearest
neighbor surface site. Ramifyng structures change from the sidebranching type
growing with stable tips to the tip-splitting type with decreasing of anisotropy
strength. Self-similar diffusion-limited aggregation (DLA) with a growth mecha-
nism of random tip-splitting type appears in the anisotropy crossover domain under
the adequate noise. Another type of DLA, dense-radial-like and crystal-like
patterns are also investigated from above viewpoints.

1. Introduction

Much attention has been paid to the dendritic crystallization in the diffusion
fields as a problem of interfacial instability and also as a problem of pattern
formation in nonlinear and nonequilibrium systems (Ivantsov, 1947; Mullins and
Sekerka, 1964; Langer and Muller-Krumbhaar, 1978; Huang and Glicksmann,
1981; Brower et al., 1983; Kessler et al., 1985; Dougherty et al., 1987; Bechhoefer
and Libchaber, 1987; See, e.g. Pelcé, 1988).

According to the nonequilibrium condition, various kinds of dendrite have
been observed in the supersaturated ammonium chloride (NH,Cl) solution (Chan
etal.,1976; Honjo et al., 1985). A tip-stable type of the <100> dendritic crystal has
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been observed in a moderate supersaturation regime of solution. The shape of the
tip interface is stable parabola. The rear interface becomes unstable and then side
branches are formed. Growth mechanism of the dendrite has been theoretically
investigated as the problem of interfacial instability in a non-linear system with the
boundary condition of anisotropy or surface tension (Langer, 1980, 1989). Pieters
and Langer (1986) have indicated from a boundary-layer model that the successive
side branches in the tip-stable dendrite are generated by selective amplification of
noise near the tip.

For a very low supersaturated solution a tip-oscillating type of <100> dendrite
is obtained. The tip velocity and the tip curvature oscillate in time and the
sidebranching mechanism is strongly related to this oscillation. In the much higher
supersaturation regime where the most preferred orientation changes from the
<100> direction to the <110> direction, NH,Cl dendritic crystals various kinds of
tip-splitting type are observed.

Irregular fractal-like crystal growth from the aqueous solution of NH,Cl has
been detected by the experiment of diffusion controlled crystallization in the Hele
Shaw-like cell, one of the glass-plate surfaces of which is roughened to weaken the
degree of the crystal-growth anisotropy (Honjo et al., 1986). Its fractal dimension
obtained from the radius-of-gyration exponent is 1.671 + 0.002 and is in very good
agreement with the theoretical prediction (Muthukumar, 1983; Tokuyama and
Kawasaki, 1984; Honda et al., 1986) for the diffusion-limited aggregation (DLA)
model (Witten and Sander, 1981; See, e.g. Family and Landau, 1984; Stanly and
Ostrowsky, 1985; Pietronero and Tosatti, 1986; Vicsek, 1989). Moreover, the
generalized dimensions and the f-a spectrum for this fractal-like crystal (Ohta and
Honjo, 1988) based on the growth-probability-distribution analysis (Halsey et al.,
1986; Vicsek, 1989) are in good agreement with the results for the off-lattice DLA
simulation and theory (Hayakawa et al., 1987; Matsushita et al., 1987). The relation
between regular dendritic crystal and random DLA-like one is discussed by the
crystal growth from melting succinonitrile (Honjo et al., 1987). Various growing
modes such as asymmetric tip-splitting, symmetric tip-splitting and tip-oscillating
growths are obtained in the supercooling-anisotropy phase space.

These experiments of crystal growth indicate that the boundary conditions
arising from the anisotropy and noise are essential for the dendritic pattern
formation in the diffusion field. In fact, such boundary conditions have been
clarified in the experiments of the electrodeposition (Sawada et al., 1986; Grier et
al., 1986) and the anisotropy imposed viscous fingering (Ben-Jacob et al., 1985).

On the other hand, experimentally observed DLA patterns by the elec-
trodeposition (Matsushita et al., 1984), dielectricbreakdown (Niemeyer et al., 1984),
hydrodynamic viscous fingering (Daccord et al., 1986), monomolecular layer (Miller
et al., 1986) and dendritic crystal growth (Honjo et al., 1986) construct homoge-
neous and self-similar structures. Ball and Brady (1985a) and Meakin et al. (1987)
have found the inhomogeneity of Witten-Sander DLA model growing in the <10>
direction from the superposition of many simulated patterns and from the large
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scale simulation, respectively. Therefore, it is attractive problem what growth
mechanism of the unscreened tips can control whether a pattern grows homoge-
neously or not.

Various kinds of the aggregation model have been performed to search for the
interrelation between DLA and real crystal growth by the introduction of surface
tension effect (Vicsek, 1984, 1985; Tao et al., 1988), Monte Carlo averaging (Tang,
1985; Kertész and Vicsek, 1986; Eckmann et al., 1989, 1990), coase-grained lattice
(Matsushita and Kondo, 1986), noise parameter (Nittmann and Stanley, 1986) and
surface kinetic process (Xiao et al., 1988).

In this paper, we insert a surface diffusion process by means of the random
walk of Brownian particle along the pattern surface into the Witten-Sander DLA
model on atwo-dimensional square lattice. From the Monte Carlo simulation of this
model, we investigate the growth features of the dendritic and DLA patterns.

2. Solidification of Surface Diffusion Particles

Surface diffusion particle which occupies a metastable state among the surface
energy levels transits to a surface state of another surface site due to the thermal
energy. There are two well known processes on the solidification of such particles
in the field of crystal growth. The one is the stabilization at the kink point or step
site where the surface potential is low. The other is the two-dimensional nucleation
arising from the increasing concentration of surface diffusion particles on the
principal surface without any kinks or steps. In order to take into account of the latter
process, we assume a nucleus composed of m particles, and assume the surface
random walk of T steps after the sticking of Brownian particle until create a nucleus.
Here, the surface is defined as the site that something of its nearest neighbor (NN)
sites is occupied by the pattern.

While for the former process, surface particle arrived in a kink site has
diffusion stopped even if its steps of random walk are less than <. The kink site is
defined as where the adjacent two NN sites as well as a next nearest neighbor (NNN)
site between them are occupied by the pattern. In the kink site, we also assume that
the pattern grows when the count of arrived particles reaches m, which corresponds
to the length of a step in real step growth of the crystal. This value m has been called
a noise parameter in the simulation of Nittmann and Stanley (1986) without any
surface diffusion process.

Schematic drawing of the Monte Carlo simulation is shown in Fig. 1, where
b is a Brownian particle in the Laplace field and d is a surface diffusion particle.
Solidification of the surface particle k at the kink site is the step growth type, and
that of the surface particle n at the principal surface such as AB plane is the two-
dimensional nucleation type.

For the kinetics of surface diffusion particles, we further introduce a hopping
parameter which is defined by the ratio of the transition probability for the NNN site
to that for the NN site. Assuming the potential barriers of A; and A, that surface
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Fig. 1. Schematic drawing of the Monte Carlo simulation on two-dimensional square lattice. Open and
closed circles show Brownian and cluster particles, and solid and dotted lines represent the
bondings of nearest and next nearest neighbor sites, respectively. And figure shows Brownian
particle in Laplace field by b, diffusion particle on the pattern surface by d, crystallization of surface
particle at kink point by k and surface nucleation on a plane surface by n.

particles undergo at the transit to NN and NNN sites, respectively, hopping
parameter is described as y = exp{(A; — A)/kT}. A transfer surface site is chosen
from all of NN and NNN surface sites around the present position by the Monte
Carlo method with the selection weight of one for NN site and that of y for NNN site.
After the trial of T steps or arriving at the kink point, we have the memory of located
surface site counted up. In a special case for the sum total of selection probability
to be zero under y = 0, we have diffusion particle stopped at the present surface site.
In case of small y surface diffusion is limited within a plane surface, but in case of
large y surface particle enable to transfer to a different plane through the hopping
process to the NNN site. Following simulations begin from a seed particle putted
on the center of x = y = 0 as same as the ordinary DLA simulations. However,
maximum flight length }, of Brownian particle in the field is chosen by §, <5 + /7
lattice units instead of J, = 5 in Witten-Sander DLA simulated by Meakin (1986a),
and the radius where Brownian particles are killed is selected by r + si,, instead of
3r of ordinary simulations, where r is the maximum radius of the pattern and s is the
fixed number of s = 15. These selections give the consistent fractal dimensions with
those obtained previously as indicated in the Witten-Sander DLA and off-lattice
DLA simulations of below sections. By means of those simulations, computing
time can be reduced. Almost all simulations are performed up to the radius of r =
600 lattice units.
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3. Dendritic Pattern Formation with Different Anisotropies

Typical examples of the simulated patterns obtained from fixedm =1and r =
600 are shown in Fig. 2. Even in the case of T = 1, anisotropic pattern grows in the
<10> direction at y = 0 of Fig. 2(a), and grows in the <11> direction at y = 1 of Fig.
2(c) by means of the mechanism of kink growth. Really, in a kink-off simulation
which assumes the lack of kink effect, homogeneous DLA-like pattern grows as
shown in Fig. 2(e), where every surface particle has carried out the surface random
walk of v =1 step. These results indicate that the solidification at the kink point plays
an important role for the anisotropic pattern formation.

The strength of pattern anisotropy increases with increasing of t as is seen in

(a) (b) i
(c) (d)
(e) o (f)

/]

Fig. 2. Typical examples of the simulated patterns with the radius of r = 600 lattice units obtained from
fixed m = 1. Kink-on patterns, (a) y =0, T= 1, N = 65,000, (b) y = 0, T = 100, N = 61,000, (c) y =
1,T=1,N=110,000, (d)y =1, t =100, N = 192,000, yield anisotropy. While the anisotropy of
kink-off patterns, (e) y=1,t=1,N =114,000, (f) y = 1, T= 100, N = 298,000, are invisibly small.
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Figs. 2(b) and 2(d) of kink-on simulations with T = 100. However, in case of kink-
off simulation with T = 100 its anisotropy is invisibly small as shown in Fig. 2(f),
whose fractal dimension is d; = 1.716 = 0.010 for the average of 90 samples of the
particle numbers N = 215,000. Such a result is in good agreement with d¢=1.715
of off-lattice DLA simulation by Meakin and Sander (1985). Randomly ramifying
structures are also different from the sidebranching type in the anisotropic patterns
of Figs. 2(b) and 2(d).

For this kink-off pattern, we can estimate the average thickness w of branches
from the relation of N = ,,,,d.. The result shows w ~t'/4 on the dependence of T up
to 200 steps. Since the surface diffusion length is described as Iy = /7 for the
random walk of T steps, such a dependence w ~ 4"/ indicates that the surface
structures of the kink-off patterns are recognized as the two-dimensionally rough
surface such as the Peano curve (Mandelbrot, 1977). While, the thickness of
branches for the <11> dendritic pattern in y = 1 like as Fig. 2(d) is proportional to
1;by means of direct measurements of w. In such a pattern, tip front of main branches
has faceted surfaces at its both sides as referenced in AB and BC, planes of Fig. 1.
The length of faceted surface which is calculated as the mean length of BC, (first
step) and BC, (second step) for the <10> direction excellently agrees with /5. On the
other hand, for the <10> dendritic patterns of y = 0 characteristic lengths such as the
thickness of main branches and the distance between successive side branches are
not so clear on the dependence of <. It seems that the effective surface diffusion
length becomes less than /7 because the surface diffusion processes are limited
within a plane surface. Therefore, the thickness of Fig. 2(b) is very thin comparing
with that of Fig. 2(d). In case of T = 10° aty = 0, <10> needlic pattern appears without
any sidebranchings up to the pattern size of r = 600.

4. Anisotropy of Dendritic Pattern

Varying features of the anisotropic pattern obtained from the kink-on simu-
lation of fixed m = 5 and t = 10 are shown in Fig. 3. These results indicate that y is
an effective control parameter for the pattern anisotropy. In case of small y the tip
front has rough surface composed of kinks and the surface diffusion process is
limited within a plane surface. Therefore, solidification of the particles adsorbed in
the tip front derives the pattern growth towards the <10> direction. While in case
of large y, such adsorbed particles can penetrate into the screened surface near the
tip due to the diffusion process transfer to the NNN site, and then such a tip as facets
form in its both sides develops through the solidification at kink sites. As a result
of the nucleation and kink growth on both faceted surfaces, the tip grows inthe <11>
direction. Hence, we can understand that the dominant process of the tip growth is
frontal type under the condition of y <y and lateral type under that of y >y, where
y. is the hopping parameter at the crossover point between <10> and <11>
anisotropies.
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Fig. 3. Examples on the dependence of hopping parameter for fixed m = 5, T = 10 and r = 600. The
hopping parameters are y = (a) 0.05, (b) 0.175, (c) 0.2, (d) 0.23, (¢) 0.3 and (f) 0.6. The particle
numbers constituting the patterns are N = (a) 124,000, (b) 211,000, (c) 251,000, (d) 293,000, (¢)

200,000 and (f) 147,000. Averaged pattern anisotropies for many samples are a = (a) 0.71, (b)
0.51, (c) 0.37, (d) 0.01, (¢) —0.51 and (f) -0.70.

In order to obtain y, we measure the anisotropy of patterns as follows: A pattern
is divided into four parts by the two lines of x = +y, and then the radii of gyration
kigj and ko, along the <10> direction are obtained as the average values of four
parts, where kyg) and kyq, stand for the characteristic lengths of main and side
branches in the <10> dendritic pattern, respectively. At the same time, from the
patterns of four parts divided by the two lines of x = 0 and y = 0, we obtain the radii
of gyrationk; ;) and kyy, along the <11> direction characterizing the lengths of main
and side branches of the <11> dendritic pattern. Finally, pattern anisotropy is
calculated from a definition of o = (kq1; — ky0.)/(k111 + Kq01) represented by the
characteristic lengths of sidebranches. The features of o depending on y are shown
in Fig. 4, where we used the average of 20 samples (50 samples of N = 215,000 only
in case of y = 0.23). The <10> and <11> dendritic patterns are described as 0 < a
< 1and -1 < a < 0, respectively. This measure shows o = 0 for disk, a =-0. 172



224 Chapter 4

ol Rl T T T
Y # %o o
gL % -
] o
£ °
o 0o
O
o0 o
% o
o
Q o o _J
o o g
R 1 L { 1
00 a2 04 06 08 10

hopping parameter

Fig. 4. Varying features of the pattern anisotropy o for fixed m = 5 and Tt = 10 as a function of the hopping
parameter y. The crossover point of a = 0 gives y, = 0.233 = 0.005.

forsquare, o = 0. 172 for diamond, o = 1 for + pattern and o = -1 for x pattern. From
these results for m =5 and T = 10 we get y. = 0.233 = 0.005 as the value of y at a
=0. Therefore, Fig. 3(d) indicates a crossover pattern between the two anisotropies
of <10> and <11> dendritic growths.

5. Morphological Phase Diagram of Dendritic Pattern

Crossover points for m = 1, 5 and 100 obtained from above method are plotted
in Fig. 5 as a morpological phase diagram of hopping parameter y versus surface
diffusion steps t. The <10> dendritic pattern grows in the range of small values of
y and T, on the other hand the <11> dendritic pattern appears in the range of large
values of y and t. The crossover line of m = 1(@) between <10> and <11> anisotropy
domains satisfies y, Jz = 1.0, i.e., . = 1/l for T >> 1. Such a relation implies that
the crossover condition is determined by the balance between the probability 1/],
situated in the edge of plane surface with the length /; and the relative transfer
probability y to translate into another plane by the NNN site hopping.

While, the crossover lines for m = 5(x) and 100(O) are situated below that for
m=1,ie.,y.=t%2form=5andy. =7t for m= 100 int>> 1. Such phenomena
can be understood from the two averaging effects based on the increment of m and
the surface diffusion process, and also can be understood from the difference of
surface structures between {10} and {11} planes. The increase of m takes effect on
the smoothing of the diffusion field due to the averaging process of the randomness,
and this effect equally acts on the {10} and {11} planes. While the surface diffusion
process takes effect on the smoothing of the surface concentration and that of the
surface nucleation growth. This effect acts only on the {10} plane, but there is no
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Fig. 5. Morphology diagram of dendritic pattern on the phase space of hopping parameter y vs. surface
diffusion steps t. Plots indicate the crossover points between <10> and <11> dendritic pattern for
fixed m = 1(@®), 5(x) and 100(O).

effect on the {11} plane covered with kinks because surface diffusion is forbidden.
Such smoothing effects on the {10} plane enhance with increase of m.

Letus consider a {10} surface without kinks such as AB plane in Fig. 1. In case
of m = 1, nucleation growth on this plane occurs in an arbitrary site according to the
random number used in the Monte Carlo method. On the other hand, in case of large
m probability of the nucleation growth at the center of this plane, increases by the
smoothing effects mentioned above. New {10} plane is formed both sides from this
nucleus by the step growth. Therefore, the increment of m constructs a smoother
surface in the {10} plane than in the {11} plane under the conditions of fixed y and
t. Such considerations indicate that the surface (line) tension increases in the <10>
orientation. As a result of this effect, pattern grows in the <11> direction with weak
surface tension. In fact, the increment of m derives the pattern growth with thick
branches and with <11> anisotropy.

Various patterns for m = 100 with the smoothing effect and with the anisotropy
of surface tension are shown in Fig. 6. The pattern of Fig. 6(a) with a=0.859 obtained
from y = 0 and t = 100 has stable tips in the front of main branches, which is
excellently similar to a typical form of real dendritic crystal growth. Front surface
of the tips is composed of kinks, and its rear surface becomes unstable. This result
interests in connection with the problem of interfacial instability (Pieters and
Langer, 1986) for the tip-stable type of real dendritic crystal growth such as NH,Cl
crystal (Honjo et al., 1985). In there conditions, the increment of T drives a needle-
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Fig. 6. Typical examples of simulated patterns obtained from fixed m = 100. Simulated conditions are
(@) y =0, t =100, r = 400, N = 52,000, (b) y = 1, t = 10*, r = 400, N = 290,000, (c) y = 0.46, T =
2,r =600, N =224,000 and (d) y = 0.18, t= 10, r = 600, N = 319,000. Growth features are (a) tip-
stable dendritic type, (b) hopper type, (c) anisotropy coexistent type and (d) anisotropy interme-
diate type.

like pattern with smooth rear surface (Langer, 1986; Barbieri et al., 1987; Liu and
Goldenfeld, 1988). These results indicate that the increments of m and v are effi-
cacious against the interfacial instability.

Leading process of the pattern formation in Fig. 6(b) of y = 1 and T = 10%* is the
lateral growth mechanism due to the step and nucleation growth on faceted surfaces.
It shows a regular pattern when the length of faceted surfaces are less than /g, i.e.,
at N < 4/;2 = 40,000, and then it forms a hopper-like pattern with giant steps as seen
in Fig. 6(b). According to the conditions of surface diffusion mechanism, present
kink-on simulations yield two similar patterns to real crystal growth.

The examples of crossover pattern for m = 100 are shown in Figs. 6(c) and 6(d),
the morphology of which is quite different from that for m = 5 of Fig. 3(d) due to
the existence of anisotropical surface tension effects based on the averaging
process. The morphology of Fig. 6(c) for T = 2 indicates an anisotropy coexistent
type with mixed <10> and <11> anisotropic branches, where y takes 0.46. While,
that of Fig. 6(d) for T = 10 and y = 0.18 shows an anisotropy intermediate type that
the main branches grows with the middle preferred direction between <10> and
<11>directions. Such a morphological change occursatt=4~5,i.e.,l4~2.1. These
results imply that the surface tension in the middle orientation weakens as [y = 2.1,
and that the growth mechanism of tips becomes the asymmetric tip-splitting type
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asseen in the experiment of diffusion controlled crystallization (Honjo et al., 1987).
Thus, the existence of averaging mechanisms produces the anisotropy of surface
tension through the surface diffusion processes.

6. Diffusion-Limited Aggregation in kink-on Simulation

Characteristic feature of DLA is homogeneous and self-similar structures
without any anisotropy. On the pattern formations of the homogeneous DLA as well
as the anisotropic dendrite, only a few hottest tips can practically grow outside of
the pattern, which mainly determines its framework. Therefore, it is an important
problem to understand the pattern formation growing in the diffusion field what
growth mechanism of the hottest tips can control whether a pattern grows homo-
geneously or not.

We introduced a measure of a in order to get the anisotropy of the patterns in
previous section. All of crossover patterns in kink-on simulation as seen in Figs. 3(d)
and 6(c) and 6(d) show a ~ 0. However, it is clear that the crossover patterns for m
= 100 have the inhomogeneity reflected in the coexistent or intermediate states of
the anisotropies. Therefore, in order to detect the homogeneity of patterns, we need
to use another type of measure. For this purpose, we calculate the two types of fractal
dimension based on the different standpoints.

We study the scaling properties of kink-on patterns at first by using the finite-
size scaling analysis (Meakin and Family, 1986b). Two exponents v|(O) and v (®)
obtained from the relations of ky ~ y% and k; ~ yv. are shown in Fig. 7(a) as a
function of o for fixed m = 5 and T = 10, where the data of kg and kyo, (k;y and
kq1,) are used for the patterns of a > 0 (a < 0). Therefore, v and v, indicate the
characteristic exponents of the main and side branches for the dendritic pattern,
respectively. Since the crossover pattern of o ~ 0 as shown in Fig. 3(d) has vj=v,
in Fig. 7(a), we can understand its structure in a self-similar fractal with the same
scaling properties for the main and side branches. But the other anisotropic patterns
yield self-affine fractals (Mandelbrot, B. B., 1982) with different scaling exponents
between main and side branches. The fractal dimension based on this finite-scaling
analysis has been derived as D = 1 + (1 — v))/v,, which is a dimension described
within the region of the pattern to be able to adapt to the anisotropic patterns.
Namely, a main branch of length k; is composed of lumps of size k, . Assuming the
fractal dimension D within the lump, particle numbers constituting a lump is k, 2,
and then particle numbers of the main branch is kj/k, times as much as that. Above
equation for D is obtained from the equality in the exponents of N ~ (ky/k, )k P by
substituting before relations for k and k. Self-similar pattern of v| = v, = v gives
D = 1/v. The results of D(O) calculated from the exponents of Fig. 7(a) are shown
in Fig. 7(b).

While, ordinary fractal dimension d; is defined by the exponent of the radius
of gyration around a vertical axis to the pattern plane, which represents the
characteristic behavior of the occupied space by the pattern comparing with the
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Fig. 7. (a) Characteristic exponents v|(O) and v (@), and (b) fractal dimensions D(O) and d(®) drawn
as a function of pattern anisotropy for the kink-on simulations in m = 5 and v = 10.

overall space. Hence, it can be expected that D is always larger than d¢ excepting
a homogeneously spreaded pattern over the whole space. As shown in Fig. 7(b)
d{ @) gives maximum value at o ~ 0, and also extremely agrees with D(O) at a. ~
0, where d;=1.716 = 0.003 and D = 1.715 £ 0.010 for m = 5, v = 10, y = 0.23 and
N = 215,000.

From the above results, we can conclude that this crossover pattern forms the
isotropic, homogeneous and self-similar DLA, because it has a =0, D =d;and v
= v, within the error, and also because its fractal dimensions D = d¢ ~ 1.716 ex-
cellently agree with the result of d¢ = 1.715 in the off-lattice DLA simulation
(Meakin and Sander, 1985). Hereafter, we call it kink-on DLA.

On the growth mechanism of hottest tips constructing ahomogeneous and self-
similar DLA, we can estimate from the various results for the kink-on simulations
obtained until now. Morphology of ramifying structures changes from the
sidebranching type to the tip-splitting type with decreasing of the anisotropy
strength as indicated in Fig. 3. Taking care of Figs. 3(b) and 3(e), tip of main branch
sometimes symmetrically split into two branches with small unfolding angle such
as observed in succinonitrile experiment (Honjo et al., 1987). Reflecting this phe-
nomenon v, takes minimum value of about 0.5 at |a| ~ 0.5 in Fig. 7(a), which means
the compact structure of 1/v, ~2.0 in the direction perpendicular to the tip growth.



Diffusion-Limited Aggregation and Crystal Growth 229

Such anomalies imply that the morphorogical change of main branch from tip-
stable to tip-splitting modes occurs in the anisotropy strength of | ~ 0.5.

Next, let us pay attention to the angles of sidebranching and tip-splitting
structures. Unfolding angle of tip-splitting increases with decreasing of anisotropy
strength |a| as is seen in Fig. 3 according to the order of (b), (c) and (d). On the
contrary, sidebranching angle which is initially equal to right angle as shown in Fig.
3(a) decreases with decreasing of |o| in order of figure. We infer from the self-
similarity of v =v, for crossover pattern that two characteristic angles are equalized
each other in |o| = 0. According to such a conjecture DLA structures are constructed
by the random tip-splitting mechanism growing without the classification between
main and side branches.

Random tip-splitting mechanism depends on the randomness arising from
noise in the field and/or from fluctuation on the pattern surface as mentioned before.
Here, we discuss the fractalities for anisotropy coexistent and intermediate types
simulated in m = 100 with reduced effects of randomness. In the anisotropy
coexistent type of T = 2 as illustrated in Fig. 6(c), average of 25 samples fory = 0.46
and N =90,500 gives o =-0.073, d; = 1.660, v| = 0.622, v, = 0.580 and D = 1.652,
and 20 samples for y = 0.45 and N = 90,500 show o = 0.115, d;=1.672, v = 0.614,
v, =0.563 and D = 1.684. Results indicate almost homogeneous pattern of d; = D
~ 1.66, but indicate obviously self-affine pattern with different growth properties
between main and side branches, i.e., difference between vi and v, shows about
0.04. As a result of the sidebranching mechanism by fixed angle of 45 degrees, its
fractal dimension becomes smaller than that of kink-on DLA, and it is preferably in
accordance with theoretical dimension d; = 5/3.

While, in the anisotropy, intermediate type of t =10,y =0.18 and N = 304,000
as shown in Fig. 6(d), average of 5 samples shows o = 0.006 and d¢ = 1.731. Such
alarge fractal dimension seems to be attributed to the surface instability because of
the weak surface tension in the intermediate orientation. Present finite-scaling
analysis is unavailable for this pattern with different direction. Simulated pattern in
T >> 2.1 gives various kinds of interesting behavior reflecting surface tension and
weak anisotropic effects such as viscous fingering phenomena in Hele Shaw cell
(Saffman and Taylor, 1958; Paterson, 1985; Ben-Jacob et al., 1985; Daccord et al.,
1986; Liang, 1986; Bensimon et al., 1986; Tao et al., 1988; Langer, 1989; See, e.g.
Pelcé, 1988).

Subsequently, even in the kink-on simulation including the boundary condi-
tions of the surface diffusion process and kink effect producing the pattern
anisotropy, homogeneous and self-similar DLA, i.e., kink-on DLA brings into
existence in the crossover domain between the <10> and <11> anisotropies under
the adequate noise to reduce anisotropies by the mechanism of random tip-splitting
growth in the hottest tips.
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7. Homogeneity in Various Diffusion-Limited Aggregation Model

Accordingto the judgement of homogeneous and self-similar DLA mentioned
above, we investigate the homogeneity and self-similarity in various kinds of DLA
model, i.e., Witten-Sander DLA on the two-dimensional square lattice, off-lattice
DLA on the two-dimensional plane and kink-off DLA on the two-dimensional square
lattice as shown in Figs. 2(e) and 2(f). The features of anisotropy evolution are
drawn in Fig. 8 on the k;, versus ky;, plane, where plots are Witten-Sander DLA
(), off-lattice DLA(A), kink-off DLA(+) with T = 10 and kink-on DLA(O) (d), and
Figs. 8(a)~(f) (O) correspond to the kink-on simulations of Figs. 3(a)~(f). Here, a
line of kg, = kg1, shows a =0.

1 I

Kny

100

klOl

Fig. 8. Evolution of pattern anisotropy drawn onk;g, vs.k;;, plane. Here, (a)(f) correspond to the Fig.
3. (a)(f) of kink-on simulation(O). Other plots are kink-off simulation(+) int =10 up to N =
128,000, Witten-Sander DLA model( ) up to N = 54,000 and off-lattice DLA model(A) upto N
= 27,000.

The Witten-Sander DLA for 200 samples of N = 54,000 yields the pattern
anisotropy of a = 0.190 = 0.009. From the curve fitting by ko, = BONA° and kg
= BlNA‘ , we get Ag=0.564, By =0.185, A; = 0.621 and B; =0.145. It is clear that
the Witten-Sander DLA always yields <10> anisotropy from Fig. 8, which
increases with increasing of N because of Ay < A;. Such behaviors are consistent
with the results of the large scale simulation by Meakin et al. (1987). Substituting
N = 109, 108 and 10'¢ into above equations, we get o = 0.27, 0.38 and 0.49. Thus,
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our estimation says the pattern size of N > 1010 needs to get a Witten-Sander DLA
pattern with o = 0.5. The probability of the arriving particles, from the diffusion
field to the surface of a hottest tip, must be greater in the front surface than in the
side surface, as indicated in the study of the Monte Carlo averaging (Eckmann et
al., 1989, 1990). Accordingly, the Witten-Sander DLA without any surface
diffusion processes would be regarded as a type of the frontal growth type rather
than the lateral one, and thus the inhomogeneity growing in <10> direction appears.
Results of fractality for Witten-Sander DLA are summarized in Table 1.

Table 1. List of the fractal dimensions, characteristic exponents and pattern anisotropy for various kinds
of DLA model. Simulated conditions are m = 5, T =10, y = 0.23, N = 215,000 and 50 samples for
kink-on DLA, m =y =1, 7t =10, N = 128,000 and 300 samples for kink-off DLA, N = 27,000 and
200 samples for off-lattice DLA, and N = 54,000 and 200 samples for Witten-Sander DLA.

Model di D vii v, a
kink-on 1.716x0.003  1.715+0.010  0.585£0.002  0.581+0.005 0.013+0.014
DLA
kink-off 1.716+0.002  1.712+0.009  0.582+0.002  0.588=0.004 0.016+0.007
DLA
off-lattice ~ 1.714+£0.002  1.71120.009  0.582+0.002  0.588+0.004  -0.002x0.011
DLA

Witten - 1.705+0.002  1.716+0.007 0.596+0.002  0.564+0.002 0.190+0.009
Sander DLA

Results of the off-lattice DLA for 200 samples of N = 27,000 gives o =—0.002
+0.011 as shown in Fig. 8(A). Since its lattice is free from the special axis, size and
length, a hottest tip irregularly grows on its direction or splits due to the effect of
noise arising from the Monte Carlo method. On the other hand, a hottest tip of
Witten-Sander DLA on square lattice has a finite angle of attack to hold its <10>
growth even if the Brownian particle in outer field is simulated on off-lattice, which
is obviously right angle. The existence of such an angle assures to maintain the
growing direction of tip, and also this effect is enhanced by the coincidence with the
direction of gradient of the field potential (Eckmann et al., 1990). The hottest tip of
off-lattice DLA has not hold any mechanisms to its growing direction. Therefore,
such a tip growth can be recognized as a completely equalized type of frontal and
lateral growths by the noise of field. Hence, homogeneous and self-similar DLA
with the growth mechanism of random tip-splitting type appears as shown in Table
1.

Let us discuss the physical meaning of kink-off simulation. Supposing the
Brownian particle is composed of a cluster of atoms, sputter-deposition (Elam et al.,
1985) and electrochemical deposition as shown in a transmission electro micro-
graph of zinc DLA by Grier et al. (1986) seem to be examples, all of effects
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depending on the surface potential in kink-on simulation, i.e., surface nucleation,
anisotropic hopping and kink effects become negligible. Such a particle, however,
diffuses along the pattern surface until it loses kinetic energy. As a corresponding
model, we can assume the conditions of m =y = 1 and the lack of kink effect, and
assume the surface random walk of t steps for every adsorbed particle. This is our
physical viewpoints on the kink-off simulations. Such a model is equivalent to the
Witten-Sander DLA( ) model at t = 0, but according to the random walk of T = 10
steps along the pattern surface nearly isotropic pattern grows on the two-dimensional
square lattice as shown in Fig. 8(+). The kink-off pattern of T = 10 yields a. = 0.016
+ 0.007 for 300 samples of N = 128,000. Adsorbed particle arrived on the hottest
tip randomly diffuses on the surface sites, and then grows at a site which is
arbitrarily chosen among the unscreened and screened sites near the tip. Such a
process derives to weaken the frontal growth and to strengthen the lateral growth.
From this mechanism o shows smaller value than that of Witten-Sander DLA, and
anearly isotropic pattern is realized. However, it is assumed that the frontal growth
occurs more frequently than the lateral one with the surface random walk of
adsorbed particle in mind. Namely, the occupation probability of the particle after
the surface random walk is greatest in the initial point arrived from the field. As a
result of such effects, kink-off DLA yields very small <10> anisotropy as indicated
in case of T = 10. However, <10> anisotropy decreases with increasing of t, e.g., o
=0.003 = 0.012 for 90 samples of T = 100 in N = 215,000. Fractal dimensions and
characteristic exponents, however, indicate homogeneous and self-similar DLA as
shown in Table 1 for kink-off DLA of © = 10. Although the dependence of T in the
kink-off DLA is an open problem, we can recognize it as nearly homogeneous and
self-similar DLA within the error.

From these investigations for the growth mechanisms of the hottest tips in
various kinds of aggregation model, it is indicated that the tip growth balanced
between in the frontal and lateral surfaces can construct a homogeneous and self-
similar DLA. And also, it is clarified that the random growth in the tip surface
arising from the noise of field and arising from the random surface diffusion
mechanisms enhances the homogeneity of patterns. And the tip growth with such
a homogeneity mechanisms yields the randomly ramifying tip-splitting structure.
Results for the various kinds of DLA are summarized in Table 1.

8. Homogeneous Dense-Radial-Like Aggregation

The importance of the random tip-splitting process to construct ahomogeneous
pattern can be indicated in the formation of a dense-radial-like pattern, which has
been experimentally performed in the electrochemical deposition of zinc (Sawada
et al., 1986; Grier et al., 1986, 1987). Dense-radial pattern grows radially from a
cathode tip with the higher pattern density than DLA, and its global shape is holded
circularity and homogeneity.

Result of the dense-radial-like pattern growing with the random tip-splitting
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process is shown in Fig. 9, which is simulated on the square lattice for the pattern
growth and on the off-lattice for the outer field. Excepting the drift motion of
Brownian field particles towards the center (x = y = 0), this pattern is obtained from
the same conditions as the crossover pattern of Fig. 3(d) in kink-on simulation, i.e.,
surface diffusion mechanism of m = 5,t=10andy=0.23. Here, the ratio of the flight
length for the drift motion to that for the Brownian motion in the field sets equal to
aquarter. This pattern is characterized by a=-0.02, vj=v, ~0.52 and D =d;~1.93.
Such results clarify that the random tip-splitting growth constructs a homogeneous
and self-similar aggregate irrespective of the drift motion in the outer field.

Fig. 9. Homogeneous and self-similar dense-radial-like pattern obtained from m = 5, T =10, y = 0.23,
r =600 and N = 680,000 under the drift motion of Brownian particles in the diffusion field.

Above pattern is simulated on square lattice with the kink effect, hence it
corresponds to a single crystal in real pattern formation. Assuming the surface
diffusion of cluster-like particle as indicated in kink-off DLA, and also assuming the
polycrystaline lattice such as off-lattice DLA, constructing of completely circular
dense-radial pattern as observed in zinc electrodeposit (Sawada et al., 1986; Ben-
Jacob et al., 1986; Grier et al., 1987) is anticipated.

9. Summary

In order to search for the relation between DLA and real pattern formation in
especial dendritic crystal growth, new aggregation models including surface
diffusion processes are performed on the two-dimensional square lattice by using
the computer simulations not only under the boundary conditions of kink-on and
kink-off cases in Laplace field but also under the drift motion in the diffusion field.
Various kinds of the shapes closely related to the real crystal growth realize such
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as <10> and <11> sidebranching dendritic patterns, hopper-like pattern, symmetric
and asymmetric tip-splitting patterns, homogeneous and self-similar DLA patterns,
and homogeneous dense-radial-like pattern.

From the results of kink-on simulation, the anisotropy whether pattern grows
in <10> or <11> direction is classified by the growth mechanism of the hottest tips
whether it is frontal or lateral type. According to a new measure of pattern
anisotropy o, the ramifying morphology can be grouped into two classes of
sidebranching phase in |a| 2 0.5 and of tip-splitting phase in |at| < 0.5. The tip growth
of random tip-splitting type in the anisotropy crossover domain of o ~ 0 constructs
ahomogeneous and self-similar DLA with the fractal dimension of d;= 1.716 under
the existence of the adequate noise. Such a tip growth produces a homogeneous and
self-similar dense-radial-like pattern under the drift motion in the outer diffusion
field. Therefore, we can conclude that the homogeneous and self-similar on-lattice
patterns come into existence in the anisotropy crossover domain due to the
anisotropy reducing effects by noise.

Such considerations on the close relation between the growth mechanism of
the hottest tips and the anisotropy of pattern are not only valid for the anisotropies
of Witten-Sander DLA and nearly homogeneous kink-off DLA but also valid for the
homogeneity of off-lattice DLA.

Fractal dimension d¢ = 1.716 of homogeneous DLA obtained from the radius-
of-gyration exponent and D = 1.715 obtained from the finite-scaling analysis are
consistent each other and also consistent with d; = 1.715 of off-lattice DLA. How-
ever, these values are inconsistent with the theoretical value of d¢=5/3 (Muthukumar,
1983; Tokuyama and Kawasaki, 1984; Honda et al., 1986). Such a theoretical value
agrees with the fractal dimension of the anisotropy coexistent pattern rather than
that of DLA. Turkevich and Scher (1985) and Ball et al. (1985b) have discussed the
fractal dimension of DLA from a standpoint of the growth probability in the hottest
tips. Present results point out that the balancing mechanism between unscreened
and screened surfaces in the hottest tips needs to construct the homogeneous and
self-similar pattern. Accordingly, itis an interesting problem whether new theoretical
approach to the fractal dimension of DLA based on present considerations is
possible or not.

The kink-on simulations yield various kinds of crystal-like patterns such as
regular, hopper, needle, sidebranching, tip-stable and tip-splitting patterns. These
results not only indicate that the boundary conditions of anisotropy and noise are
essentially important for the dendritic pattern formation, but also indicate that the
present model is closely related to the real dendritic crystal growth. However, some
of the assumptions, e.g., constant values of m and v and also ignorance of the
evaporation process from the pattern, have been used for the simplicities of the
discussions and of the simulations. Therefore, correspondences between the
present parameters and the realistic nonequilibrium parameter of supercooling or
supersaturation are not clear. Nevertheless, noise effect, anisotropy through the
hopping mechanism of surface diffusion particles and anisotropy of surface tension
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originated in surface kinetics are realized. Present results must play an important
role in the analysis and discussions of the complicated ramifying structures growing
in the nonlinear and nonequilibrium systems.

Finally, we can deduce the following classification on the pattern formation
growing in the diffusion fields. The DLA pattern is generated in the homogeneous
Laplace systems carried with sufficient amount of fluctuation, e.g., viscous finger-
ing in the miscible liquids (Wong, 1988), electrodeposition constituted by cluster
(Grier et al., 1986) and crystal growth in the randomness imposed cell (Honjo et al.,
1986). The additional boundary condition of isotropic surface tension turns system
into the problem of Hele Shaw cell. The addition of anisotropic boundary conditions
makes DLA system change into the crystal growth. And the inclusion of drift
motion in the diffusion field, i.e., the decrease of the diffusion length induces the
dense-radial growth. Diversity of real dendritic pattern formation comes into
existence from the competition of those conditions.
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