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Abstract. The steady and transient pattern formations are described theoretically
and experimentally in the Freedericksz instabilities magnetically and electrically
induced innematic liquid crystals. The transient pattern formations can be explained
by the backflow effect due to the director reorientation when considerably large
external fields are applied. Under the situation superimposing fluctuating fields
(external noise) with deterministic fields, called multiplicative noise effects, the
response of the instabilities is changed. The threshold field for the onset of the
instabilities decreases with increase of noise fields, as expected previously. The
solitons and wall motions are also described briefly when a rotating magnetic field
is applied to the homeotropic orientation sample. Most of them are rather new
phenomena and not well understood yet.

1. Introduction

Pattern formations in dissipative systems are very interesting subjects to be
investigated. Especially they are usually dynamic and show various beautiful
patterns. One example of them which has been well studied is the
electrohydrodynamic instability (EHDI) in anisotropic fluids, nematic liquid crystals
(de Gennes, 1982; Blinov, 1983; Kai and Hirakawa, 1978). In EHDI however,
pattern formations are much complicated to be understood because of anisotropies
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and existense of convections. In spite of these disadvantages as they show very
similar features to those in the well-known Rayleigh-Bénard convection, qualita-
tive understandings are now in progress quickly and they have been extensively
studied by many authors recently (Kaiand Zimmermann, 1989; Krameretal., 1989;
Joet and Ribbota, 1986; Rehberg et al., 1988).

The rich behavior of nematic liquid crystals with respect to their pattern
forming instabilities can be better understood by presenting an example quite apart
from the context of EHDI. In the particular situation, we are going to deal,
theoretically with on what follows, the external forcing agent is a magnetic field
which causes an internal reorientation of the sample, which is again coupled to flow
motions inside the material. The same situation happens when the magnetic field
is just replaced by an electric field as will be experimentally described here. These
reorientation instability of director is called the Freedericksz transition.

In ideal situations, both electrically and magnetically induced Freedericksz
transitions are identical with each other for theoretical consideration. Here we
describe their dynamics in both fields. Especially in an electric field, the study of
external noise effects called multiplicative stochastic processes is extremely
convenient. Therefore, in this article we will also describe multiplicative stochastic
processes in the electrically induced Freedericksz transition as well as in EHDI.

2. The Freedericksz Transitions

2.1 Transient pattern formations in Freedericksz transition

The magnetically induced Freedericksz transition occurs in a nematic slab
when the director reorientates with an angle 0 in the direction of an applied magnetic
field H larger than a critical one H, (Fig. 1). The standard description corresponds
to the appearance of distortions in the orientation of the nematic molecules with
respect to the original configuration, the degree of distortion being homogeneous
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Fig. 1. The magnetically induced Freedericksz transition.
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in each plane of the sample, and of a maximum intensity in the mid plane far from
the plates limiting the nematic materials.

This simple picture of the Freedericksz instability is however too simplified
to account for some experimentally observed facts. A particularly interesting
feature in this context concerns the occurrence of transient spatial structures
corresponding to modes of inhomogeneous distortions on the planes of the sample.
There isnow a broad experimental evidence of this phenomenon (Guyonetal., 1979;
Lonberg et al., 1984; Hui et al., 1985; Hurd et al., 1985; Kuzma, 1986; Wu et al.,
1990), which also deserved a detailed theoretical analysis (Guyon et al., 1979; San
Miguel and Sagues, 1987, Sagues, 1988, Sagues et al., 1988). The suggested ex-
planation involves a dynamical coupling between the director field and the
hydrodynamic motion associated with the reorientation. Such a coupling givesrise,
during the transient process, to spatial domains with a well-defined periodicity. In
these domains the director field reorientates in opposite but equivalent directions.
The selection of a wavenumber is thus associated with the dynamics of a symmetry
breaking. This phenomenon has been observed for different materials, both
thermotropics and lyotropics, as well as for different geometries regarding the
initial orientational configuration of the sample and the applied magnetic field
(Guyonetal., 1979; Lonbergetal., 1984; Huietal., 1985; Hurd et al., 1985; Kuzma,
1986; San Miguel and Sagues, 1987, 1988a, b; Srajer ez al., 1989; San miguel and
Sagues, 1990). In the simplest cases the pattern consists in a collection of stripes
perpendicular to the initial director (Guyon et al., 1979; Lonberg et al., 1984; Hui
et al., 1985), although oblique (Hurd et al., 1985) and two-dimensional structures
have also been detected (Kuzma, 1986).

The characteristic periodicity of these transient patterns has been commonly
described in terms of a most unstable mode (Guyonetal., 1979; Lonberget al., 1984;
Hui et al., 1985; Hurd et al., 1985; Kuzma, 1986). A linear analysis of the
nematodynamic equations around the initial undistorted configuration identifies
the mode of fastest growth. It is assumed that this mode dominates the transient
dynamics. Its characteristic wavelength is associated with the observed periodicity.
The dependence of this wavelength with respect to the applied magnetic field seems
to be in agreement with experimental observations. However, this approach
although useful understanding the main physical ingredients in the origin of the
observed periodic structures, is far less valid if one is interested in the dynamics of
the pattern formation process itself. For this reason, we have recently made the
nonlinear nematodynamic model in the reorientation of the nematic sample. This
model enables us to study the time dependence of the characteristic periodicity
starting from the homogeneous sample as initial configuration. The subsequent
analysis is based on the evolution equation for the time-dependent structure factor
which accounts for the orientational distortions of the director, once thermal
fluctuations and hydrodynamic effects have been taken into consideration.

Thermal fluctuations, essential in triggering the initial decay from an unstable
state, are incorporated in our description through the use of Langevin-type equa-
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tions corresponding to a time-dependent Ginzburg-Landau (TDGL) formulation
commonly invoked in studying critical dynamics and the dynamics of phase
transitions (Gunton et al., 1983). In this way our approach to the problem of the
Freedericksz transition is reminiscent of the Cahn-Hilliard-Cook theory of spinodal
decomposition (Hohenberg and Nelson, 1979). However, an important remark is
that, taking the mean first passage time as an indicator, the equations we proposed
for the Freedericksz problem admit linearization procedures that turn out to be valid
not for the whole process but for considerably larger time scales as compared to the
case of spinodal decomposition for systems with short range forces. This should
make our predictions much more easily accessible to experimental testing.

On the other hand, it is worth remembering that, in the spinodal decomposition
problem, the fact that the most unstable mode is not the homogeneous one can be
understood in terms of a conservation law. In the Freedericksz transition, however,
this effect can be related to a tradeoff of rotational for shear viscosities, leading to
a compromise at some intermediate nonzero wavenumber, for which the increase
in elastic energy contribution is favorably balanced by a higher energy dissipation
rate, controlled by a lower effective viscosity. This effect, as mentioned above,
directly results from the coupling of the director rotation and fluid velocity
gradients. In what follows, and from a theoretical point of view, we will describe
this behavior as one of the simplest realizations of the magnetically induced
Freedericksz instability.

Let us consider the twist geometry described in Fig. 2. The sample is contained
between two plates perpendicular to the z axis. The director is initially aligned along
the x axis, and the applied magnetic field is aligned along the y axis. We want to
study the transient behavior of the system when the magnetic field is switched at ¢
=0 from an initial value below H_ to a final value above it. The physical picture of
the formation of a transient pattern is also indicated in this figure. For positive
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Fig. 2. Schematic representation of the geometry of the nematic sample. Flows generated by oppositely
rotating zones which explain the appearence of transient structures are also schematically
displayed.
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diamagnetic anisotropies, the director tends to become parallel to the magnetic
field. For high enough fields this reorientation may occur locally in opposite but
equivalent directions. We assume, for simplicity, that macroscopic flow only exists
inthe y direction, and homogeneity extends on the direction of the applied magnetic
field. We finally assume that the director reorientates on the x-y plane:

n,(x,z) = cos¢(x,z), (1a)
n,(x,z) =sing(x,z), (1b)
n, =0. (1c)

A minimal coupling approximation is then invoked (Sagues et al., 1988; Sagues
and Arias, 1988; San Miguel and Sagues, 1990) to convert the general nematodynamic
equations into a pair of closed equations for ¢ and v,:

dpp = (=17 7,)6F 1 66 +(2p) " (1+2)8,8F 1 6v,, + E(F,1'), (2a)

dv, =(20) " (14 A)0,8F 1 8¢+ p 2 (v,02 + v;07 JF | v, +(0,92,, + 0,92, )

x=%yx

(2b)

6F | 50 = K29+ Kyslo + 2,1 (6-(1/3)° ) (2¢)
SF | v, = pv,. (2d)

The Gausiann random forces appearing in the above Langevin-type equations
satisfy fluctuation-dissipation relations in terms of pure rotational and shear
viscousities, respectively y; and v,, v3. L and p stand respectively for a linear
transversal dimension and the mass density of the sample:

(&(Fn)E(7, 1)) = (2kpT 1 7, L)8(x = x)8(z = 2)8(1,"'~1,"),  (3a)
<an (F.t,')Q2, 5 (F',tz')> = (2kT 1 PPL) V8,8 (x = x')8(z = 2)8(t,'~1").  (3b)

(vx’z =V, a,f= x,z)
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A series of technical manipulations are then strictly convenient in order to
proceed further with the analysis of the early stage dynamics of the Freedericksz
transition. First of all one introduces the hypotheses of negligible inertia, which
enables us to obtain a closed equation for the deformation angle. This equation is
more easily handled in terms of a Fourier representation appropriate to the strong
anchoring boundary conditions prescribed for the nematic molecules at the limiting
plates, z = £d/2:

p(x,z:0') =D D0, 4 (t)cos(2m + 1)z / d - exp(ig, x), (4a)
m q\
E(x,z3t) = DD &, e (t)cOs(2m + )7z / d - exp(ig,x), (4b)
m g,
Q,(x,z:t) =2 > Qp  (t')cos(2m +1) 7z / d - exp(ig  x). (4¢)
m g,
(a=x,z2)

The resulting equation for the amplitude of the reorientational mode even in
its linear version, already shows the dynamical consequences of the reorientation-
flow coupling

3,0, (1)

t'Y'm,qx
= ig [t = Kna(2m+1) () ) = Ksq? [0 g0 (1) M e (1), (50)
V=7 -3/ (n+nar’ ), (5b)
Mg (1)
= &g () + (cp /[ 11 + a7 ) — 3] () 07705 (0)] (50)

ar =qd/ 12m+1), oy =—y,(142)/2, ny=vs, 0. =vs+7,(1+1) /4.

The important point to be noticed is that the temporal evolution of the
reorientational process is no longer dictated by the pure rotational viscosity y; but
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is governed by an effective wavenumber dependent viscosity y;,. Thus, the cou-
pling of the director and velocity fields results in a reduction of the viscosity for all
modes g, # 0. This permits modes of bend deformation along the x direction to grow
faster than the homogeneous one, giving rise to pattern structuration. Actually,
using literature values for a typical nematic material, MBBA at room temperatures
(0?7 M.=0.74,m,/M.=0.40)itiseasyto see thaty,, =y, whengq,=0,and aminimum
Yig = 0.26y, for g, —> 0. (v, is always positive with a maximum value.) Thus, the
stability range for the different modes (g,, m) remains unmodified with respect to
the case without hydrodynamical coupling: For H > H, = (K,,m?/(yd?))"2, twist m
modes become unstable. However, due to the dependence of y,, on g, modes of
fastest response ¢, # 0 may lead the response of the system provided,

h*(m)= H? /[(2m +1)2 H? ] (6a)

R (m)> 1+ (Kaa Yila/ Ky 0‘%)- (6b)

Accepting that the mode of fastest response slaves other modes during the
transient evolution following the reorientation, one predicts the appearance of a
periodic bend pattern for magnetic fields satisfying the above condition. This
occurs for fields not much larger than the critical one 42(0) = 1 (normalized field),
although there still exists a range of fields for which the homogeneous response
dominates.

The early dynamical stages of the transition can be easily followed by
converting Eq. (5) above into an equation for the structure factor Cy, ,,,(¢) =<0, ,,(t )0_
gom(t)>. Using standard methods one has,

ﬁlﬂc

qx,m
2
=(2qu,m(t')/y1q)[xaH2—Kzz((2m+1)7r/d) —K33qf]+4kBT/quV. (7)

A convenient way of monitoring the dynamical emergence of the pattern
consists in analyzing the time evolution of the mode gzy,, corresponding to the
maximum of the structure factor C,, o (m = 0 is the most unstable twist deformation
mode). This is depicted in Fig. 3. Different and well-resolved time scales can be
distinguished in this figure. A first well-defined time scale corresponds to the sharp
increase of ¢7max, When the system takes off from the initial conditions. This time
is associated with the characteristic time at which the periodic pattern appears. A
second time scale can be identified as corresponding to the slow growth of gz.x.
which is reasonably associated with the formation and development of the spatial
pattern. Late stage dynamical scales for the disappearance of such transient patterns
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Fig. 3. Temporal development of wavenumber corresponding to the maximum of the structure factor
(see text).

cannot be described within the limits of this approach and mobility and recombi-
nation of defect walls must be taken into account (Sagues and San Miguel, 1989).

Different situations with interesting dynamical implications can be envisaged
when considering the Freedericksz transition under non-standard magnetic forcings.
In particular, we will refer on what follows to a pair of particular examples
concerning respectively a fluctuating and rotating magnetic field.

2.2 The Freedericksz transition under a rotating magnetic field

Very interesting theoretical and experimental implications can be envisaged
when one refers to the magnetically induced Freedericksz transition conducted
under a rotating magnetic field. For an homeotropic geometry, which is the one
discussed here, experiments were already performed by Brochard et al. (1975),
whereas a theoretical discussion can be found in Brochard et al. (1975) and Sagues
(1988).

As before we take z as the direction perpendicular to the plates containing the
sample. According to the prescribed homeotropic alignment of the directors the
sample is subjected to a rotating magnetic field applied perpendicularly, let us say
in the x-y plane. If the intensity of the magnetic forcing exceeds an w-dependent
threshold, to be later determined, the sample will undergo an internal homeotropic-
planar reorientation. The dynamical equations appropriate to the situation here
considered can be better formulated in terms of two polar angles, the distortion and
azimuthal angles 0(r, t’) and ¢(r, ¢’) respectively. A convenient reduction in the
level of technical complexity of the equations to be used can be attained under the
reasonable assumption which amounts to neglecting all spatial inhomogeneties for
the azimuthal variable. Proceeding in this way the equation for ¢(¢ ) decouples from
the one for the distortion angle 6(r, ¢), and enables us to readily identify two
different regimes regarding the rotation of the director:
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1) A synchronous rotation characterized by a constant retardation angle a::

p()=Qt-a, t=1,'t, (8a)
sin2a = Qr, (8b)

T=2/h2’ ‘[O:Xylliz =}/ld2K33ﬂ2’ (80)
Q=owy,d* /| K37’ (8d)

2) Anasynchronous rotation characterized by a time-dependent retardation
angle a(?):

o(t) = Q1 - a(r), (9a)
tana (1) = (Q7) ' + [1 -Q? 1'2]1/2 tan[(Q2 L l)l/zt / r} (9b)

On whatrespects to the onset of the Freedericksz instability one finds two well-
different behavior (Brochard et al., 1975; Sagues, 1988):

In the synchronous case the critical Freedericksz field is a nonlinear function
of the rotation frequency of the applied magnetic field:

H () / H? =1+ (nod* / i*Ky) (10)

In the asynchronous regime, contrarily, the instability condition turns out to be
independent of this frequency: H2(®) = 2H 2.

Actually, atthe level of description we are proposing here, we can even address
further questions concerning the eventual occurrence and dynamics of singularities,
like orientation walls, defects, etc. in the pattern of reorientation of a sample
subjected to experimental realizations of the Freedericksz transition under a
rotating magnetic field. In particular, the possibility of detecting target-like or spiral
patterns results specially exciting and is now under experimental consideration
(Migler and Meyer, 1990; Kai et al., 1992). Preliminary theoretical approaches
have been also very recently ellaborated in terms of a perturbative ansatz based on
two small parameters: the anisotropy of the elastic constants and the distance to the
limiting conditions for synchronous rotations. Detailed calculations referring to the
rotational dynamics of the preferred angle of orientation of a Brochard’s wall show
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the coupling between the time scale of the synchronous rotation and that corre-
sponding to the asynchronous one. These calculations will be published elsewhere
(Sagues and Kai, 1992).

We would like to stress here that the present argument for pattern formations
is still semi-microscopic one and cannot describe the macroscopic pattern dynamics
consisting of groups of walls. In order to discuss its dynamics, one needs further
reduction of variables on interface motions among domains, as done by Ohta et al.
(1982) in general frame works.

3. Multiplicative Noise Effects

3.1 Magnetic Freedericksz instability

The purpose is to elucidate the effect of fluctuations of the control parameter
(external noise) on some statical and dynamical properties associated with the
Freedericksz transition. The static behavior such as profiles of distribution func-
tions in steady state under multiplicative noise has been discussed in Horsthemke
et al. (1985). To render our analysis as simple as possible, we will refer to the case
of the twist geometry and neglect any eventual inhomogeneities (bend modes) of
the sort discussed previously. From the point of view of the external noise problem,
the most significant feature is that the dynamical model is nonlinear (quadratic) in
the magnetic field. This fact precludes the use of the simplest Gaussian white-noise
assumption for the field fluctuations.

The nonlinear version of the dimensionless dynamical equation for the
amplitude of the mode m =0, ¢, = 0 reads,

0,0(t)=-U'(0)+&(r) = f(0) + h*g(0) + £(1), (11a)

U(0)=(1-4)0" 12+ 176* /8, (11b)
f(6)=-9,

2(0)=0(1-6/2) (11c)

Ty =y, d* | Ky =y, / x H?, (11d)

t=15't. (11e)

We now consider the effect of external noise in the magnetic field. The
experimental situation is similar to the one considered by Kai et al. (1979) and
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Kawakubo et al. (1981). The theoretical analysis follow the line discussed by
Sagues et al. (1985). We introduce an Ornstein-Uhlenbeck process, that is, a
Gaussian process with zero mean and exponential correlation, to simulate the
fluctuating part w(z) of the magnetic field,

H— Hy+w(1) (12a)

<w(t1)w(t2)> =(D/ 1']\,)exp(—|t1 ~n|/ TN). (12b)

In order to discuss the effect of the external fluctuations, the first problem is
to find the equation for the probability distribution associated with the above
Langevin equation. The difficulty comes from the nonlinearity of w(¢). An ap-
proximate Fokker-Planck representation which accounts for the essential effects of
the external noise can be obtained in the limit D << 1, 1y << 1 with D/t finite. Here
D and 7y are the dimensionless noise intensity and correlation time respectively
(Sagues and San Miguel, 1985). This approximation actually corresponds to the
ordinary situation in which the noise evolves in a fast time scale, but has a finite
strength measured by the integral of the spectral density S(m): D/ty=JdoS(®). This
procedure is equivalent to a consistent Markovian limit which leads to a Fokker-
Planck equation written as,

6,P(6,1) = 5,[U"(6) - Dg(6)g'(6)|P(6,1) + 55 Dg*(0) + £]|P(0.1),  (13a)

D =D(4K* + D/ zy) (13b)

Two different effects of the external noise may be readily noticed. The firstand
most important is a genuine consequence of the nonlinearity of the noise and

amounts to a modification of the potential U which is now replaced by {7, or

equivalently by the substitution of 42 by a? = 32 + D/ty. The second effect is the
introduction of a state-dependent noise through the coupling function g(6).

Atthis level two different consequences of the external noise can be analyzed:
The shift of the instability point and the modification of the relaxation times. On
what respects to the first question, and using the extrema of the stationary solution
of the Fokker-Planck equation as an indicator, an straightforward calculation gives
the threshold value for the Freedericksz transition as,

Bt =(1=D/ty+D*/7y)/(1-4D), (14)

and also the assymptotically expanded form in powers of Ty
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;7,51—:1_D/TN+(4—3D/rN)z1—D/TN~ (15)

The dominant contribution, —D/ty, implies that rapid external quadratic noise
destabilizes the system lowering the threshold value of the Freedericksz instability.
We estimate that typical realistic parameters of the noise may result in 5 percents
variation in this threshold condition.

On what respects to the analysis of relaxation times, and taking into account
the pure systematic effect manifested in the modification of the potential U, one
immediately sees that the relaxation times towards the stable solution 62 = 0 below
the shifted instability decrease, whereas they increase when referring to the
relaxation towards the stable distorted configuration 62 = 2(1-1/a?) above the
modified Freedericksz instability.

3.2 Dielectric instability (electrically induced Freedericksz instability)

The pattern formation process due to the dielectric instability called the
electrically induced Freedericksz instability is observed when an electric field is
applied to the homeotropically oriented nematic sample with negative dielectric
anisotropy &, < 0 (see Fig. 1). In this case, unlike in the electrohydrodynamic
instability, an electrical conductivity is not necessary, i.e., no ionic current flows
and only dielectrically induced deformation is taken into account. When the applied
electric field E reaches to the threshold field E,2 = n?K;/gye,d° (K;; = K33 in the case
shown in Fig. 4) where ¢ is the dielectric constant of vacuum, homeotropic ori-
entation starts to deform in the bulk of a sample. The deviation from pure
homeotropic orientation is represented by a tilt angle 6. Energetically two angles +0
are identical and can be taken. Between them there is a boundary with singular
orientationas shownin Fig. 4. Ifone applies a step field £ to the uniform homeotropic
cell, due to initial fluctuation of the director, many domains with two different tilt
angles in space transiently appear (Fig. 5). The similar transient hydrodynamic
effect (back flow effect) with a magnetic field case has been already observed in the
electrically induced Freedericksz instability (Buka et al., 1989). This could be

Fig. 4. Domain wall between different domains with two director orientations energetically identical
againt an external field E.
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(a)

Fig. 5. Typical transient pattern in the electrically induced Freedericksz transition. (a) r< 0, (b) 0 < ¢
(typically several seconds), (¢) £ = o.

explained by basically the same frame work described above replacing a magnetic
field to an electric field. However, in actual experiments in the clectric field ionic
conduction has to be taken into account, i.e., additional scts of terms are needed
(Winkler et al., 1990). This again makes problems complicated. In this sense thus,
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the simple electrically-induced Freedericksz transition has been already well-
understood (Blinov, 1979).

Here we will briefly discuss the non-trivial noise effect of the electrically
induced Freedericksz transition in homeotropical oriented sample, the so-called
multiplicative noise effect. A noise electric field is much more easily realized than
a noise magnetic field. This is the reason why we study the electrically induced
Freedericksz transition instead of the magnetically induced one. As the experimen-
tal set-up has been described elsewhere (Kai, 1989; Kai et al., 1989), we will de-
scribe here only a preliminary resultrecently obtained. By replacing magnetic fields
by electric fields in Eq. (15), one obtains equation for the electric field,

ez =1-D/ty+D(4-3D/1y)~1-D /1y (16a)

(SE(t)SE(0)) / EZ =D / 7y x exp(~t / ty)="Vy / VZexp(~t / Ty) (16b)

Here 3E(?) is a fluctuating (noise) electric field. Similarly the mean first passage
time 7T can be described by equation (Sagues and San Miguel, 1985),

1. (1
T:Eln(z)/(eg+D/rN—l), (17)

eo=E/E,=V/V,.

1.0 -
®
o
[ ]
T 05f NI :
.0
A
®o
% 05 1.0
(Vy/ Ve )

Fig. 6. Noise intensity ¥ dependence of threshold e of the Freedericksz instability for various T (A:
200 ps, 0: 20 ps, o: 2 ps). The solid line is due to Eq. (16).
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Fig. 7. Noise intensity dependence of the mean first passage time of the Freedericksz instability for
various Ty (A: 200 ps, o: 20 ps, 0: 2 ps). The solid line indicates Eq. (17) with 2= 18 VX(A) and
12 V4(B).

Here ¢ is the normalized field and the mean first passage time at an electric field
E in the absence of multiplicative noise respectively. € is the internal noise intensity
and very large (~0.3) in this case. This may be due to the nonequilibrium noise
enhancement (W. Schoepf, 1991). The experimental results are shown in Figs. 6
and 7 for shifts of the threshold and of the mean first passage time respectively. In
the present study 7 have been obtained by use of birefringence technique (Kai,
1989; Kai et al., 1989). The solid lines are due to Egs. (16) and (17) in Figs. 6 and
7 respectively. Both the shifts of a threshold and 7 are on the same line for different
Tyrespectively. Agreements between theoretical and experimental results are quite
good. The investigation is still going on and its detail will be published elsewhere
in near future.

3.3 Onset of electrohydrodynamics

Multiplicative stochastic process in EHDI is much more complicated, because
of spatial structures and hydrodynamic flows (Kai et al., 1989). Detailed results
experimentally obtained have been already described in Kai (1989) and Kai et al.
(1989) and will be briefly summarized here. For the first bifurcation point in EHDI,
noise influences as follows.

(1) When the correlation time T, of noise is much shorter than the character-
istic time T, of a system, the threshold ¥, for the onset of Williams domain (roll
convection) increases, i.e., V., is shifted up. However for 15> 1., V. decreases. Noise
therefore can control both stabilization and destabilization.

(2) The structures at the first bifucation point (V) become more complicated
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Fig. 8. Threshold shift for the onset of convection versus correlation time 1y of noise in the
electrohydrodynamic instability. The solid line is due to the Kuz and Wodkiewicz’s analytical
result. (a) Vy=8V, (b) 25V, (c) 30 V.
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when noise intensity increases at Ty <<t,. Finally, the direct transition to turbulence
(DSM) is induced by noise (Brand et al., 1985). This may be said that noise induces
a multiple-dimension instability (Kai and Zimmermann, 1989).

(3) The noise intensity dependences of the threshold shifts are changed
depending on the spatial structures which appear at V.

For these findings, theoretical works cannot explain all (Kai et al., 1979;
Kawakubo et al., 1981; Kuz and Wodkiewicz, 1983; Miiller and Behn, 1987, 1990).
There are many contradictions from these theories in the experimental facts because
most of them are based on linear theories, except one by Kai ef al. (1979) where
important flow effects however were neglected. They could only explain (1) the
threshold shift to higher value for ty << t, (Kawakubo et al., 1981; Kuz and
Wodkiewicz, 1983; Miiller and Behn, 1987, 1990), (2) the threshold shift to lower
value for ty > 1. (Miiller and Behn, 1987, 1990). In order to explain the above
experimental facts (2) and (3), we must rigorously take spatial degrees of freedom
and nonlinear terms into account. This is usually difficult as well-known Swift-
Hohenberg-type equations in Rayleigh-Bénard convection (Kramerezal., 1989; Kai
etal., 1989).

The ty-dependence of the threshold shift has been given analytically by
theories (Kuz and Wodkiewicz, 1983; Miiller and Behn, 1987). Some qualitative
aspects obtained in experiments agreed with both theoretical results (Kaiet al., 1989).
Noise used in our experiment is a Gaussian white noise, not a dichotomous noise
(Miiller and Behn, 1987) and ty can be changed by special electrical filters as
already described elsewhere (Kai, 1989). Therefore, here we compare the experi-
mental result of the ty-dependence of the threshold shift with the theory obtained
by Kuz and Wodkiewicz (KW) (1983). Figure 8 shows the threshold shift for
various Ty. The solid line is due to KW’s theory. The tendency decreasing the
threshold shift with increase of ) well coincides with the experimental result but
both slopes are quite different from each other. Namely experimental data shows
rather concave while the theoretical curve shows convex shape. This indicates no
applicability of the analytical result from a linear theory. More precise theory based
on nonlinear equations will be required.

4. Conclusion

We have described our recent theoretical and experimental results of pattern
formations in Freedericksz instability and its multiplicative stochastic processes as
well as one in EHDL. In the Freedericksz instability the theoretical results well agree
with experimental ones. Most of them could be described in the present theoretical
frame works except an internal noise intensity. However, in a rotating magnetic
field experimental results are not enough as well as theoretical consideration.
Especially domain wall motions cannot explain yet and even dynamical equation
for them are not obtained yet. We must think about further reduction of variables
to look only macroscopic parts of the phenomenon. We are now achieving detailed
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experiments of soliton and spiral pattern formations under a rotating magnetic field
most of which will be in future. In multiplicative noise effect in EHDI our
experimental results show that as the correlation time Ty increases, the threshold for
the onset of convection decreases monotonically. The current theories based on a
linear theory can predict such a tendency independent of either a Gaussian white or
a dichotomous noise, but the dependence obtained experimentally is quite different
from theoretical one. More complete theory would be required to explain the
multiplicative noise effect in EHDI.
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Ministry of Education, Science and Culture (No. 02452047). We would like to
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Technology.
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