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Application of the Variation Principle
to Geographic Pattern Analysis

Masashige HIRANO

Department of Geography, Fac. Lit., Osaka City University,
Sugimoto 3-3, Sumiyoshi-ku, Osaka 558, Japan

Abstract. The variation principle is very much useful to analyse the origin of some
geographic patterns rationally as the stationary curve or the optimum path. Total
time, cost, force, etc. are often given by a functional which is the integral along a
course defined by some function mathematically, and the function minimizing or
maximizing the integral gives the stationary curve. This concept supplies an
important basis to understand linear pattern and the background distribution of a
scalar, concerned, as shown here by several examples.

Introduction; variation calculus

For instance, the route connecting two points fastest under a given condition
is a kind of the optimum path (Fig. 1). For this problem, the velocity is given as a
function of location generally, and we have v = v(x, y) in cartesian co-ordinate. The
time required along the route /; »(x) on a plane is given by the integral,

ds ) J~\11+y (1)

- Tv(x,y

and the optimum path is given by the stationary curve minimizing the integral. The
Eq. (1) is re-writen more generally as
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Fig. 1. The optimum path for walk across the marsh in which the velocity changes locally due to ground
condition. Numerals by iso-chrone give the time required to access there from the starting point
B. After Bunge (1962).

1= TF(x,y,y')dx, (1)

o

and called the functional. The function y(x) minimizing the integral (1) satisfies the
Euler’s equation,

) .

Especially when F does not depend on x explicitly, Eq. (2) has the first integral given
by

F-y—=0(, (29

where C) is a constant of integration. Further integration of Eq. (2') brings another
constant of integration C,. The constants are determined by the boundary condi-
tions,

y=Yyo at x=x,
y=y at x=x

which imply that the curve passes the two specified points.
It is possible generally to obtain the optimum path connecting two points on
a given surface by this method. The author discussed the application of this analysis



Application of the Variation Principle to Geographic Pattern Analysis 471

to some geographic patterns briefly (Hirano, 1978) and wishes here to refer to this
again with some additional results obtained thereafter.

1. Geodesics
It is shown immediately by application of this method that the shortest path

(geodesic) on aplane is given by a straight line and that the one on a sphere by a great
circle. The geodesic on a plane minimizes the functional,

L1=J.]a's=i[l 1+y™ dx. (3a)

%0
Applicationof Eq. (2)to F'= 11+ y* bringsy =+Cxwith C+=+/C;? — 1 . By further
integration, we have
y=2Cx+0G,,

finally, which defines a straight line as the shortest path connecting two points.
Likewise, we have for a sphere the integral,

0
Ly = [\1+ ¢ sin*0d0 (3b)
8

to be minimized, where ¢ is longitude and 0 is given by 8= 90° — w for latitude w.
Following Eq. (2") we have

Vain2
@'sin“ 0 -q

J1+¢%sing

and it is known that ¢’ = 0 for C; = 0. This gives constant ¢ which means the
meridian, a great circle. An airline route covering a long distance follows the great
circle. Of course a slight modification of it is resulted to save fuel following air
pressure patterns as discussed by Waranz (1961) for the flight course across the
North Atlantic.

2. Law of Traffic Path Refraction

Consider a path for transportation across two distinct areas such as sea and
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land. Cost for transportation differs from the areas, and the refraction of the path
occurs at the contact boundary of the areas, because that straight line is the optimum
path in the respective area and that there is a point on the boundary that minimizes
the sum of the costs along the straight paths (Fig. 2). This phenomenon is well
known as the law of the traffic path refraction since Stackelberg (1938). The water
path for a point facing the shore from an inland city gets long-shore course as long
as possible to form the critical angle with the inland path as the result of this
refraction.

C/: 263 B
(x ,}’i)

(Sea)
(Land)

Fig. 2. The optimum path for the minimum sum of the transportational cost across the two distinct areas
such as land and sea. The path is refracted at the boundary (shore). After Hirano (1978).

3. Near Shore Railway

Consider the case to plan a railway route near shoreline. It is approximately the
case that the cost of construction for railway is proportional to the reciprocal of a
linear function of the distance from the shore. Because the closer to the shore line
the area, the more densely populated is. The cost is given totally by



Application of the Variation Principle to Geographic Pattern Analysis 473
T kw
C= [——A1+y%dx, (4)
S a+by
0

where w is the width of the zone needed for railway construction. The path
minimizing the total cost is given by an arc. Especially when a = 0, the center of the
circleis on the shoreat y =0 (Fig. 3). The location of the three railways, JR, Hankyu-
line, and Shinkansen, connecting Osaka and Kobe shows a distinct pattern as given
in Fig. 4. Their locations relative to the coast line and to the residential area can be
explained by this way. The exceptional case of the Hanshin-line almost along the
shore connecting the cities among Osaka and Kobe has a quite different process of
location of the line. Namely, request and support of the areas through which the line
runs brought the present pattern in spite of its later age of construction than JR.

y
Q xB (X, )
A
X (X0 ¥p)
° (Lan)
0 x=C (Sea)

Fig. 3. The optimum path minimizing the total cost for construction of the railway connecting two cities
near shore. The cost is proportional to the reciprocal of the distance from the shore. After Hirano
(1978).

4. Bypass Problem

Land cost in urban area is proportional to the reciprocal of the distance from
the center of the city, generally. Large part of the cost required at road construction
comes from that for getting the land. Here we assume that the cost is proportional
to the reciprocal of the linear function of the distance » form the city center. The
functional giving the total cost is thus

kW 2 2
C= +rde, 5
J.a+br e ()
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when one of the terminal points is chosen to be at 6= 0. Especially for the case of
a =0, we have a logarithmic (equiangular) spiral

0/6,
r "

—_ = = 5'
L-[4] 5)

as the optimum path (Fig. 5). A good example of this case is shown by the
Hamamatsu bypass for the route 1; Tokaido (Fig. 6). The generality of this case is
evident from the distributional mode of the land cost approximated by Eq. (5) except
for the region just near the center of the city.

Fig. 5. The optimum path minimizing the total cost for construction of bypass route avoiding the center
ofa city where land cost decreases outward in proportion to the reciprocal distance from the center.
After Hirano (1978).

It is remarked in near shore railway or in bypass problem that density of such
institutions to be avoided as school, hospital, historical monument, etc. is a function
of distance analogous to the land cost, and thus the land cost itself is unnecessarily
proportional to the reciprocal of the distance directly. It is also emphasized here that
mathematically same problem as those shown by Eq. (4) or (5) appears at
propagation of seismic wave in subsurface area as clearly shown by Miarage
phenomenon.

5. Transversality Condition and Port-Orientated Railway

The boundary conditions often modify the geographic patterns we observe.
Especially the transversality condition is important to understand the access route
to a specified boundary like coast line from a given point of inland area. If the route
wishes to connect the shore and inland city by the shortest line, the route gets
perpendicular to the shore. This is the simplest case of the transversality condition
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which means that one of the terminal of the stationary curve is located on a given
curve. Denoting the boundary by y = g(x), the transversality condition is given by

F+(g’—y')g§=0, at x=x,. (6)

Especially for F = 1+ % , Eq. (6) reduces to
gy=-1 at x=x (6"
which means orthogonal relationship of y, the stationary curve, and g, the boundary.

We can find often this type of problems in geography, and the case of port-
orientated railway route is a good example as shown in Fig. 7.
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Fig. 7. Port-directed railway accessing perpendicular to the coast. The example of the optimum path

satisfying the transversality condition in variation calculus. After Himeji quadrangle of 1/50000
by Geogr. Surv. Inst. Japan.
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If a geographic field or a spatial distribution of a scalar was described by
contour lines, the orthogonal curves to contour lines form a group of stationary
curves, satisfying the transversality condition. For instance, consider the optimum
paths for person trip corresponding to a given isochrone map as given in Fig. 1, the
trace of trip is everywhere perpendicular to the isochrone lines. The line of
maximum inclination for a given elevational contour map is also normal to the
contour lines and defines the characteristics of the given topographic relief.

6. Natural Condition and River Bed Profile

The nature of longitudinal profile of rivers is often discussed in geomorphol-
ogy. It is possible to obtain it after the variation principle as the brachistchrone, the
fastest line along which the mass glides down in gravitational field. Thus, the profile
is the stationary curve of the functional,

T= f_—_“ffyydx (7)

asv=12g(hy - h) =k+[y .1tis well known that the profile is cycloid as no friction
acts on river bed in this case.

Y

Fig. 8. Longitudinal profile of river bed as a brachistchrone obtained for the case in which the bottom
resistance is proportional to the square of flow velocity. The result of numerical solution for given
values of constants has been shown after Hirano (1978).
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If the friction proportional to square powers of velocity works on the bottom,
we geta concave profile analogous to cycroid or exponential curve as shown in Fig.
8. The natural condition,

(%} =0, at x=x (8)

has to be satisfied generally at the terminal point where the river water approaches,
because no restriction on the velocity at the end is specified in this case. The result
given in Fig. 8 was obtained by numerical integration under this condition.

7. Mountain Climbing Route

Climbing route guiding us to the mountain peak goes straightly at the gentle
foot, and shows zig-zag pattern on the steep slope. This particular pattern can be
explained as the optimum path minimizing the distance (geodesics) or the total or
excess energy required for climbing. Approximating the mountain slope by a cone,
itis found that geodesics on it directing the summit is a radial line passing the center
of the mountain, and that the optimum path for the energy is logarithmic spiral on
the steep slope (Fig. 9). Geodesics for a gentle slope is the optimum path even
concerning the energy required at climbing. Mt. Fuji climbing route is a good
example of this case as discussed by Hirano (1983), because the mountain is well
approximated by a cone and that the climbing route has established over long time
for climbers without mechanical support.

Fig. 9. Mountain climbing route as the optimum path minimizing the energy required for climbing. The
mountain with the top at the center is approximated by a cone shown by concentric contour lines
and the route given by logarithmic spiral has been tipped back to give a zig-zag pattern in order
to be directed the mountain top. After Hirano (1978).
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8. Glacial Valley Profile

It is well known that glacial valley shows very much common and beautiful
cross profile often referred to the U-shaped profile. It has been discussed that profile
can be approximated by parabola or by catenary. If the contact length of ice and rock
at the gracier bottom is constant, it is shown by variation calculus that the profile
giving the extreme value to the bottom friction proportional to the pressure due to
ice weight is a catenary (Fig. 10) as shown by Hirano (1981). The curve defines the
maximum total friction along the contact plane, and this means the most effective
profile for bottom erosion and for glacier ice storage. It’s clear that both situation
are necessary and important for development of the U-shaped glacier valley by
scoring or pracking. The result gives way to analyse the developmental process of
mountain glacier as discussed by Hirano and Aniya (1988, 1989). The optimum
profile for glacier ice transportation is discussed in a same way as for the landslide
being discussed next to maximize the cross area under the constraint condition of
the constant bottom resistance.

Fig. 10. Catenary as the stationary curve maximizing the bottom friction on a given contact length of
glacier valley cross profile. Variety of curves are resulted in corresponding to the boundary
conditions and to the contact length (the constraint condition). Numerals given the ratio of the
contact length to the valley width. After Hirano (1981).



Application of the Variation Principle to Geographic Pattern Analysis 481

9. Cross Profile of Landslide Block

Cohesion and friction works on the bottom of landslide block to resist the
driving force due to gravitational acceleration. Stability analysis of landslide block
is referring to the balance of the forces working in the longitudinal profile.
However, some of the landslide shows elongated plan shape and arcuate cross
profile. For this kind of landslide, it is often difficult to approximate the sliding
plane by a simple arc in the longitudinal profile, and cross profile analysis
(transverse two-dimensional analysis) can bring another kind of stability criterion.
In addition, we are free from the moment of rotation in this case and the problem
ismuch simplified. If cohesion works exclusively, it is shown by variation calculus
that the most unstable cross profile maximizing the cross area of the block is hemi-
circle. Ifthe friction constitutes of the portions proportional to depth and of constant
partidentical to cohesion, the mostunstable cross profileis elliptic and the flatteness
ofitis determined by the ratio ofthe identical cohesion to maximum bottom friction.
Experimental result (Fig. 11) by Hirano and Ishii (1989) supports the above
conclusion.

Fig. 11. Example of cross profile of landslide developed in wet sand. Shadows of cross bars give the
outline of the shape. The cross profile is a kind of optimum one that make the slide block most
unstable having the cross area maximum. After Hirano and Ishii (1989).

10. Iso-Perimetric Problem
In the cases of U-shaped glacial valley and land slide block, the constraint

condition defining the contact length or the resistant force was introduced. The
condition is given by the integral
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I= IG(x,y,y’)dx. (9)

X

This has been specified for the same range of x at the integral (3) that defines the
functional to be minimized or maximized. Euler’s equation in this case is applied
to F'+ LG instead of I, where A is the Lagrange multiplicr. This is called the iso-
perimetric problem in variation calculus. We can find out a lot of examples to which
this type of constraint condition is attached in the naturc. The fundamental solution
is a circle for two-dimensional problem and a sphere for three dimensional one.
They enclose the maximum area or volume for a given perimeter or surface area.

Recently, we had an exciting example of this problem, and the solution was
marked beautifully on the land surface. Namely, Fig. 12 shows a collapse developed
over the subsurface cave where Oya stone were curried before. The plan shape of
the fallen block shows an almost perfect circle, and this is the stationary (most
unstable) shape under the situation that cohesion and/or friction supporting the soil
layer along a given circumference is specified, though detailed discussion on the
locality of supporting columns or on the exact shape of subsurface cave will be
needed for further precise analysis.

Fig. 12. Collapse of the covering earth layer over the cave made by curring the Oya-stone in Tochigi
Prefecture. Excitingly typical solution of iso-perimetric problem in variation calculus. The photo
by Asahi Shimbun Publishing Company just after the occurrence on February 10, 1989.
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