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Stereology on Crack Geometry

Masanobu ODA

Department of Foundation Engineering, Faculty of Engineering,
Saitama University, Urawa, Saitama 338, Japan

Abstract. Crack geometry, which is closely related to the mechanical anisotropy of
discontinuous materials like rocks and rock masses, can be concisely expressed by
a tensor (called the crack tensor) introduced by Oda. In this paper, an actual rock
mass is studied to see if the crack tensor can be actually determined in situ. It is
proved that stereology, based on geometrical statistics, provides a sound basis for
determining the crack tensor.

1. Introduction

Rock masses are seldom free from geological discontinuities such as joints and
faults. The network of joints usually exhibits very complicated geometry and varies,
depending on the geological setting, from one place to another. In order to describe
such jointed rock masses concisely, we need a simple, but still general, descriptive
measure for the geometry. Such a measure, if we have, will lead rock engineers to
better understanding of the mechanical properties of jointed rock masses, and will
help them at least with choosing the proper values of hydromechanical constants by
taking account of the effect of the joint geometry more explicitly.

Extensive works have been done to search a proper measure of the joint
geometry through which we can access to the deformability and permeability of
jointed rock masses. The research has not been completed yet, but rather we can say
that there are still a lot of works to be done. However, some progress has been
achieved recently. Here, we will review briefly some of the recent progress, with
special emphasis on the use of stereology.
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2. Fundamentals of Rock Joints

No geological body is homogeneous in the strict sense. However, it can be
divided into statistically homogeneous domains each of which appears homogeneous
at some macro-scale.

We will start our discussion with describing briefly fundamental elements of
joints in each homogeneous domain; i.e., orientation, size, density and aperture of
joints. Note, however, that our purpose is not to try to give the complete description,
but is rather restricted to what we need in the subsequent paragraphs.

Volume density: Position of joints can be recognized by their centers. Let m(")
be the number of the centers in volume V. The volume density of joints p is defined
by

(1)

Orientation of joints: Each joint consists of two parallel surfaces, the direction
of each being characterized by an outward unit normal vector. Accordingly, two
unit vectors #") and n®) are assigned to each joint, so that 2m("’ is the total number
of joint surfaces in the volume V. For simplicity, these two vectors are both denoted
by n.Let dQ be a small solid angle. Then, a density function E(n) is introduced such
that 2m(VE(n)dQ gives the number of joint surfaces (also equal to the number of
joints) whose unit normal vectors are oriented within the small solid angle dQ2. The
density function must satisfy the following condition:

[ E(m)a =2 jQ/Z E(n)dQ (2)

where Q and ()/2 are solid angles indicating the limits of integration; that is, Q(=4m)
is for an entire unit sphere while €/2(=2m) is for unit hemisphere. Since E(n) =
E(—n), the integration of E(n)dQ over Q) has the same value as that of 2E(n)dQ over
Q/2. This rule is also applicable to the integration of P(n)E(n)dQ as long as P(n)
equals P(-n).

Orientation of joints is recorded by measuring their dips and strikes, and is
reported as a cluster of poles on Schmidt’s equal area net. Contour lines are
sometimes constructed to show the percentage concentration of n per unit percent
area. It is easy to prove that the percentage of each contour line, if it is divided by
47, has exactly the same meaning as the contour value of £(n) (Oda, 1985). Making
such a contour diagram is so common that £(n) can be regarded as a known function.
In order to determine a reliable function of E(n), of course, special care is needed
to avoid biased sampling of joints.

Size of joints: Itis difficult to say much about joint size since exact information
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on the shape of joints is so limited. Diameter 7, with the following definition, is
tentatively used as an index of the joint size: Consider a flat joint with area S and
substitute an equivalent circle of diameter 7 for it; i.e., » = 2(S/m)!/2.

A density function f{r) is introduced such that f{r)dr gives the probability of
joints whose size range is within » to » + dr. No information is available to say more
about f{r). We can use, if necessary, an exponential function given by

S(r) = Aexp(-Ar) (3)

It is the simplest function with the mean and standard deviation both equal to 1/A.

A density function E(n, ) must be used in more general cases in which » is not
statistically independent of r. If they are independent, E(n, ) equals E(n)f(r).

Aperture: Aperture is one of the most important aspects of a joint. A joint is
sometimes modeled as a set of parallel plates with aperture ¢. Recent studies have
shownthat sucha parallel plate model oversimplifies the reality of joints. Complicated
structure is commonly observed inside a joint, and is never specified by a unique
value of the aperture. In the theoretical study, however, only the parallel plate can
be an amenable model of a joint.

3. Index Measure for Joint Geometry

In the study of granular mechanics, several tensors were introduced to
characterize anisotropic geometry produced by discrete particles (Satake, 1983;
Kanatani, 1984). Among them, a tensor defined by

N; = IQninjE(n)dQ (4)

is also useful if n; (i=1, 2, 3) are read as components of a unit normal vector # with
respect to orthogonal reference axes x; (i = 1, 2, 3). The subscripts / and j can be set
to 1, 2 or 3. For example, », is the direction cosine of n with respect to a reference
axis x;.

Note that the definition of ; is only concerned with the orientation of joints,
without making any reference to the size as well as the density of joints. Kachanov
(1980) introduced a tensor a,; to quantify the geometry of micro-cracks in rocks:

mt)
—(1/V) Z(S(k )3/2 (%) § ) (5)

where S is the area of a kth micro-crack and m(" is the number of micro-cracks
in the related volume V. In this equation, the size as well as the number of micro-
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cracks are taken into account in addition to their directions.
Kawamoto et al. (1988) regarded joints as damages, and defined a tensor Q;;
called the damage tensor:

m(V)
Q, = (1 / V)X sOnln (6)

k=1

where | is a characteristic length for a given system. Using the damage tensor, the

conventional stress tensor is modified to yield a new stress measure. That is,
damages cannot bear any stress along them so that solid matrix including damages
must transfer higher stress than that free from damage.

Oda (1984) has also proposed a tensor F with components of F;; 4 (called the
crack tensor);

By =p[ [0 [ Sy n E(n,r, S)ddrdS (7)

Equation (7) is given in integral form since it can be easily handled in theoretical
consideration. If necessary, however, the integral form can be substituted by the
following additive one;

ml
Fyy=(1/ V) ¥ sWrpRp) 0 (8)
k=1

The tensor has non-zero components only when the rank, which is equivalent
to the number of subscripts of F; y, is even. This is because E(n, ) = E(-n, r) due
to symmetry. The component remains unchanged even if any pair of the subscripts
isexchanged; i.e. Fy; ;= Fj; ;=..=F}; ;. A contraction with respect to any pair of
subscripts reduces its rank by 2. The contraction of n;nmn; over i = j, for example,
yields nyn; since nn; = ny2 + ny2 = ny2 = 1. (Here, the summation convention is used.
That is, the summation is taken if any subscript appears twice like n;n,.) The zero-
, second- and fourth-rank tensors are given as follows (Oda, 1984);

Zero-rank:

Fy=(np / 4)f, r*f(r)dr (%)

Second-rank

Fy =(mp / 4); o rimon E(n,r)dsadr (10)
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Fourth-rank:
Fyy =(mp /4] [, 7> nin mm E(n, r)dQdr (11)

where Sis equal to (1/4)rr? since each joint with Sis replaced by an equivalent circle
with diameter r. In the case that the related volume is limited, of course, the infinity
limit in the integration of » must be replaced by the maximum size joints r,,. (Since
$%2 equals (/4)32r3, the second-rank tensor or Eq. (10) is essentially the same as
the tensor a;; proposed by Kachanov (Eq. (5).)

The tensors from Egs. (4) to (11) are all dimensionless without making any
reference to aperture ¢ of joints. Oda et al. (1987) discussed a permeability tensor
for hydraulically equivalent jointed rock masses, and found that a tensor P; with
dimension of squared length is important:

=(np/4 I J. _[ P20 E(n,r,t)dQdrdt (12)

Several tensors are available for use in practice for characterizing the joint
geometry. Rock engineers may ask what is the purpose of introducing such tensors
in rock mechanics. To demonstrate the merits of using them, the geometrical
implication of the crack tensor is discussed in some more detail.

On the assumption that joint aperture increases in proportion to joint size, it can
be proved that the zero-rank tensor Fy holds an equivalent meaning to the porosity
associated with joints (Oda, 1988). (Let us compare two samples having the same
zero-rank tensor (=porosity). It is easy to understand that they are not necessarily
the same with respect to the joint geometry. In order to differentiate them, we need
higher rank tensors as will be discussed next.)

Since Fj; is a symmetric second-rank tensor just like a stress tensor, we can
always find three principal values F;, F, and F; in three directions called the
principal axes. These axes, which are also the principal axes of anisotropy, are
orthogonal even though non-orthogonal joint sets are concerned.

Consider a space whose axes are taken as F'j, F, and F; (Fig. 1). In this space,
any crack tensor is expressed by 2 vector OP with the gﬁ)mponents of the corre-

sponding principal values; i.e., (OP)! = (F}, F,, F3). If OP is on the diagonal, the
second-rank tensor is isotropic. The vector JP is decomposed into two compo-
nents; i.e. JP = 0_:4 + 5}3 The length of 0_:4 is related to the isotropic component
while the length of JB the deviatoric (anisotropic) one. Accordingly, it can be said

- -
that the length of the vector OB, if it is normalized by the length of the vector OA4,
provides a reasonable measure for the anisotropy of joint geometry.
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Fig. 1. Crack tensor in geometrical space. (The axes are taken as the principal values of crack tensor F,
F, and F;. The broken line is parallel to the space diagonal satisfying F; = F, = F3.)

Two-dimensional joints are illustrated in squares of size a (depth 7) in Fig. 2
whose abscissa and ordinate are parallel to the reference axes x; and x,, respectively
(Oda et al., 1986). Let %) be the inclination angle of n® (i.e., a unit vector normal
to the kth joint) to the x;-axis, and r and T be the joint length and the joint depth,
respectively. Note that, for such two-dimensional cases, the direction cosine », is
given by cos 8% and n, by sin 6. The two-dimensional component of the crack
tensor, for example F' 1, is calculated by

)
Fin = (1 / a2T) Z T(r(k))2 cos?0®)sin2*) (13)
k=1

where a? T'stands for the volume V and 7+® for the surface area of kth joint in Eq.
(8).

Sample (A): Sixteen joints with the same joint length of #/a = 0.25 are inserted.
Half of them are oriented at 0 = 0°, and the remainder at 8 = 90°. The crack tensor
is given in matrix form:

R4 =1

H, K 0.5 0
=g g ) (14)
B Fp 0 05

Fii B B 0.5 0 0
E’jkl(A) =|Fpin By Fop = 0 05 0
Fon Fan Fon 0 0 0
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Fig. 2. Two-dimensional joint models. (The crack tensors in the text are calculated in reference to the
given axes x, and x,.)

Sample (B): Sample (B) is exactly the same as sample (A) except that all joints
are rigidly rotated by 45° clockwise. The crack tensor is
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sz(B) =(0.5 0 j (15)

0 05
0.25 025 0
F'® =025 025 0
0 0 025

The second-rank tensor of sample (B) has the same non zero diagonals as those of
sample (A). The tensor remains unchanged even after the sample is rotated. It can
be easily checked that any rotation gives no effect on the components of the second-
rank tensor. In this sense, the second-rank tensor is isotropic. The fourth-rank tensor
of sample (B), on the other hand, is different from that of sample (A). Since the
components depend on the choice of reference axes, it cannot be said to be isotropic
any longer.

Sample (C): Sixteen joints are inserted at 6 = 0°,45°,90° and 135°, four joints
for each orientation. The crack tensor is given by

RS =1

0.5 0
Fl6) = 16
¥ [ 0 0.5) (1)

0.375 0.125 0
Fp 9 =] 0125 0375 0
0 0 0125

Not only the second-rank tensor but also the fourth-rank tensor are both isotropic.
We can easily ascertain that these components remain unchanged even if any
rotation of the reference axes is given. However, the isotropy is lost when the sixth-
rank tensor is introduced. In order to make the sample still isotropic in the sixth-rank
tensor, an equal number of joints must be inserted at 6 = 0°, 30°, 60°, 90°, 120° and
150°, individually.

Sample (D): Orientation of joints is chosen as random as possible to make an
isotropic sample. The crack tensor becomes

FP) =1

0.488 -0.09
-0.09 0.512

D) _
Ej()_

(17)
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0.378  0.109 —0.039
F!P)=| 0.109  0.403 -0.056
-0.039 —0.056 0.109

Note that slight deviation from isotropy appears in the second- and fourth-rank
tensors. The deviation comes from the random choice of joint orientation. There is
no doubt, however, that such deviation may become unimportant by increasing the
number of joints.

The above examples strongly suggest that the detail of the joint geometry is
materialized only in higher rank tensors. The density function £(n) can be written
in a polynomial expression using either a spherical harmonic expansion in three-
dimensional cases or Fourier series expansion in two-dimensional cases. According
to Kanatani (1984), the higher order coefficients can be expressed in terms of the
higher rank tensors. This supports our observation that the details of joint geometry
can be expressed by the higher rank tensors.

4. Determination of Crack Tensor

The next problem to be solved is whether there is a reliable method to measure
the tensors by using in situ data. There is no difficulty, of course, if all the
information concerning joints is available (see Fig. 2). Since this is not usually the
case in practice, we must show a general method which makes it possible to predict
the tensors using the data obtained from field survey. To this end, we will discuss
it on the basis of stereology (Oda, 1983). (All calculations will be done under the
assumption that the random variables n and r are statistically independent of one
another; i.e. E(n, r) = E(n)f(r). If this does not hold, joints are classified into a few
groups for each of which the independency does hold. Then, the crack tensors are
calculated individually, and are summed afterward.)

4.1 Number of joints crossed by scanning line

A straight scanning line ab of length 4 is introduced parallel to a unit vector
¢q (Fig. 3). For amoment, our attention is concentrated on specific joints, which will
be called the (n, r)-joints. That is, they have unit normal vectors oriented inside a
small solid angle dQ2 around » and, at the same time, have diameters ranging from
rto r +dr. Solid lines in Fig. 3 show a column whose central axis coincides with
the scanning line ab. The cap and the bottom consist of the (n, 7)-joints so that the
cross section has the area of an (n, )-joint projected on the plane perpendicular to
q; thatis, (1/4)nr? |n-q|. Here, the dot between n and g denotes the inner product, and
| | denotes the sign of absolute value.

Now suppose that the length of the column is so long that the volume V) is large
enough. Importance of the volume arises from the fact that the (n, r)-joints intersect
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Fig. 3. Scanning line and its associated column. (Note that (n, f)-joints intersect the scanning line ab if
their centers are placed inside the column.)

the scanning line if their centers are located inside the volume. In other words, the
number of the centers of (n, r)-joints equals the number crossed by the scanning line.

The number of all joints m™ involved in ¥, according to Eq. (1), can be
estimated by

m%) =pVy =(1 /4)7rhpr2|n'q| (18)

Remember that 2E(n, r)dQdr stands for the probability of (n, r)-joints. If m") s
further multiplied by the probability, the number of (r, r)-joints dm™ whose centers
are placed inside the column is calculated by

am') = (1 /4)7rhpr2’n -qIZE(n,I*)deV (19)
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In order to countall joints (not restricted to the (n, r)-joints) crossed by the scanning
line of the length £, Eq. (19) must be integrated over €3/2 and 0 < <o, By dividing
both sides by #, we have

m® k=) 8)p[r*£(r)], |n-g|E(n)dQ

=1/ 4)mp(r*)|n-q]) (20)

where
<r2>=j:r2f(r)dr (21)
(jn-al)= [ |n-qlE(m)a (22)

where n is assumed to be statistically independent of 7. It should be noted that m(%)/
h is the number of joints crossed by unit length of the scanning line in the direction
¢, and that it is sometimes counted in the conventional field survey. Also, <|n-¢|>
can be easily calculated using the additive form corresponding to Eq. (22) whenever
the unit vectors normal to joints are given by poles of Schmidt net.

4.2 Number of joints crossed by excavated wall

Consider a plane, called the x;-plane, which is normal to an x;-axis. The plane
just corresponds to an excavated wall (or a cliff) in a rock mass. Some joints are
visible as lines (called traces) on the x;-plane only if they intersect it. First consider
an (n, r)-joint in Fig. 4, and let z be the distance between the center of the joint and
the plane. The joint will be tangent to the x;-plane at P if z equals (+/2)(1-#,2)'/2. The
parallelogram drawn in Fig. 4 by broken lines has the following characteristics: 1)
Its side planes (efgh and ijkl) are parallel to the x;-plane. 2) Its upper and lower
planes (eilh and fjkg) are parallel to the (n, »)-joints.

If the area of the x;-plane is equal to a2, the volume V¥, of the parallelogram
becomes a?r(1-n2)"/2. If the centers of the (n, r)-joints are placed inside the paral-
lelogram, they must intersect the x-plane and make traces with lengths ranging
from 0 to r. (If an (n, 7)-joint is placed at the distance of (#/2)(1-n2)!2, the trace
length shrinks to zero. If the center is just on the plane, then the trace length equals
the diameter r.) In a similar way of getting Eq. (19), the number dM® of the (n, 7)-
joints making these traces is given by

dMD = pVy 2 E(n) f(r)dQ2dr

=pazr(l—n,-z)l/22E(n)f(r)der (23)
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Fig. 4. Excavated wall (abcd) and its associated parallelogram (efghijkl). (Note that(n, r)-joints intersect
the excavated wall to make traces if their centers are placed inside the parallelogram.)

Only the (n, r)-joints are considered in this equation. In order to count all joints
intersecting the x;-plane, Eq. (23) must be integrated over 2/2 and 0 <r < o0 as
follows:

T P e (B ) E(n) £(r)d2dr (24)

Now, a new density function EO(n, r) is introduced such that EO(n, r)dQdr
gives the probability of the (n, r)-joints visible on the x;-plane. Then, E¥)(n, r) is the
density function under the condition that we are only concerned with the joints
intersecting the x;-plane. Since MOEW(n, r)dQdr equals dM®, we have

ED(m r) = iﬁi pr{1=n?)" B(m)£(7) (25)
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Fig. 5. Relation between trace length /(ef) on x;-plane and distance z(oh) of center of (n, r)-joint from
the plane.

This equation is useful because the density function E@(n, r) defined on a plane is
expressed by the functions E(n) and f{r) defined in the related volume.

4.3 Trace length

Let us consider again the (n, )-joints visible on the x;-plane. From Fig. 5, it
becomes clear that the trace length / of an (n, 7)-joint must satisfy the following
relation (see also Warburton, 1980);

1/2
4z*

(-]

Since we are now thinking of only the (n, r)-joints, n; and r in the equation can be
considered constant. Differentiating Eq. (26) leads to

I=|r*- (26)

~6z=(1/ 4z)(1-n} ol (27)

where the minus sign means that an increase of / leads to decrease of z.
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Within all (n, #)-joints visible on the x;-plane, only the joints having their
centers ata distance of z to z + (—8z) from the x;-plane give trace lengths ranging from
1to I+ 8I. In other words, the centers of the (n, r)-joints must be placed inside the
volume 2a2(—8z) to give their trace lengths ranging from / to /+8/. Let PV be the ratio
of the number of the (n, r)-joints making trace lengths from / to /+ dl to the number
of all (n, r)-joints. To make traces with x;-plane, the centers of (n, )-joints must be
placed inside the volume a?7(1 — n?)""2. Then the ratio P is given by

P(l) 202(—62)

= (28)
azr(l - n,-z)l/2
Using Eq. (27), PO can be rewritten as
pl — _% (29)
r(r2 - 12)

Remember that MOED(n, r)dQdrequals the estimated number of all (n, r)-joints
which intersect the x;-plane. So, multiplying it by P®) leads to the number of the (n,
r)-joints giving trace lengths from / to / + &/ visible on the x;-plane. In order to get
the total number of all visible joints giving the same trace length, MOPOED(n, r)dQdr
must be integrated over /2 and / < r < . Then we have

mMOf Lm POED (n,r)dQdr = MDD ()81 (30)

where a new density function ®@(J) is used to show the statistical distribution of the
trace lengths on the x;-plane. The range of integration with respect to r is taken to
be from /to co. This is because any joint cannot make the trace length of /ifits diameter
r is less than /.

Using Eqgs. (24), (25) and (29) in Eq. (30), we finally have

(1) = 2a°p jQ/2(1 - n,?)l/2 E(n)dQf”

o 72 f(r)dr

= ! ” ! r)ar
- (<V>) I] ("2 _12)1/2 f( )d (31)

Note that the right side of the equation does not include any information on the
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orientation of the observed plane (=x;-plane). In other words, ®®(/) yields the same
function regardless of the orientation of observed planes. Accordingly, the super-
script (£) in ®(J) can be omitted. Equation (31) is well known as Abel’s equation
satisfying the following relation (Kendall and Moran, 1963):

(") = <r<nr+>l> [ sin""6do (32)

where
()= j: 1"o(1)dl (33)
(rm) = [ r"f(r)ar (34)

Using Egs. (20) and (32), the terms <r>>and pin Egs. (10) and (11) can be rewritten
in terms of m"/h and <[> which are all measurable quantities in situ. Finally, the
second-rank crack tensor, for example, is given by

_32(8) m
ERERU <|,. q|>N 43

where N; is a tensor depending only on the joint orientation (see Eq. (4)).

When using Eq. (35), the determination of the trace lengths is most difficult.
It is rather a rare case to have such large excavated walls (or cliffs) on which we can
determine the trace lengths. To avoid this difficulty, another approach must be
searched for. Fortunately, there are many possibilities if an additional assumption
is allowed to be made. For example, the function f{r) is assumed to be given by Eq.
(3). Then, the moments of / in Eq. (35), i.e.<1> and </?>, can be replaced by the
number of joints visible on unitarea of an excavated wall (Oda, 1984). Counting the
number is much easier than measuring the trace lengths.

5. An Example

In order to exemplify the detailed procedure leading to the determination of
crack tensor, a typical site is chosen to investigate. (Here, only the second rank
tensor is calculated. Note, however, that no difficulty arises in the calculation of
higher rank tensors.) The site, located near Nakatsugawa, Central Japan, is
composed of moderately jointed, fresh granite. Joints were surveyed with the



532 Chapter 8

\ ° . Group
8oL . e - A (114)
T > : B(148)

S ° 1 C(102)

Fig. 6. Schmidt’s equal area projection of poles normal to joints (lower hemisphere), together with the
principal axes of F;.

special emphasis on the following points:

Orientation of joints: Three orthogonal scanning lines (EW, NS and vertical)
were set on the surface of the granite (25 m x 20 m x 7 m). Strike and dip were
measured whenever the scanning lines cross a joint. Orientation of joints is shown
by plotting their normals as poles on Schmidt’ equal area net (Fig. 6). In regard to
Fig. 6, all joints were classified into three groups ((A), (B) and (C)). The density
function E(n) for each group is shown separately in Fig. 7. Using the data of Fig.
7 in Eq. (4), N;®, N8, and N;{©) are calculated as follows:

N =| Ny Ny Ny |=| -0.010 0.071 0.078 (36)

0.789 0.049 0.123
N =10.049 0.058 0.011 (37)
0.123 0.011 0.153
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Fig. 7. Density function E(n) for each joint group.

0.031 —0.067 —0.003
N =] -0.067 0.994  0.080 (38)
-0.003 0.080  0.025

In the calculation, we referred to the axes x;, x, and x; given in Fig. 7.

Trace lengths of points: Joint traces, which were visible on the horizontal
section (25 m x 20 m), were carefully mapped (Fig. 8). Two kinds of data were
prepared using the map of the joint traces for each group separately: Firsta scanning
line pointing to a direction g was set. The number of cracks crossed by the scanning
line was counted to give m)/h, and the correction term <|n-g|> was also calculated
by using the density function of Fig. 7. Several trials have proved that (m®)/| 4| <|n-¢g|>)
remains almost constant, not depending much on the selected direction ¢ of the
scanning line. Secondly, the frequency histograms of the trace lengths were
prepared (Fig. 9). The joints belonging to gtoup (C) do not appear on the horizontal
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Fig. 8. Map showing the joint traces on a horizontal section.
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Trace length (m)

Fig. 9. Histograms of the trace lengths. (Four more joints having 13.9m, 21.0 m, 23.7 m and 28.8 m in
trace length must be added to the diagram for group (A).)

map because they are subparallel to the observed plane. So, two large vertical cliffs
located near the horizontal section were carefully skeched to provide a correspond-
ing histogram (Fig. 9). These histograms are similar in the shape, but differ in the
mean and standard deviation. This is the main reason that the joints were classified
into the three groups. Using these diagrams, the moments of the trace length, </>
and </2>, were calculated.

Using all these data in Eq. (35), the crack tensors F;), F8) and F;(© for the
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groups (A), (B) and (C) were separately calculated, and were summed up to give the

final crack tensor F; as follows:

9.965 0.162 1.651
F;=|0.162 5.091 1.066 (39)
1.651 1.066 7.715

If the reference axes are selected as the principal axes x,’, x,” and x;’ of the crack
tensor, then Eq. (39) becomes

10.919 0 0
Fp=| 0 7282 0 (40)
0 0 5169

with the principal axes plotted on Fig. 6.
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