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Appendix

A Stereological Method of Granulometry

In the domain of pathology, we often face spherical bodies of various size dispersed in
the organ.  Though a classic subject of stereology, the quantitative treatment of par-
ticles has been a matter of extreme difficulty, and the estimation of sphere number in a
unit volume NV (the numerical density) still remains a hardest problem of biometry.  In
the above, Langerhans islets and metastatic nodules in the liver (Chapter 2) and cir-
rhotic nodules (Chapter 8) were treated applying the stereological method developed
by Suwa et al. (1976).  In the following, the algorithm of this method is to be outlined,
taking the study of pancreatic islets as an example.

Fig. A-1  Dispersed spheres and chord length measurement (Chapter 2, p. 32)
Fig. A-2  N(r), the distribution of sphere radius (Chapter 2, p. 39)

We consider a space in which spheres of different radius r are dispersed as in Fig.
A-1.  Let the number of spheres in a unit volume (the numerical density) be denoted as
NV.  Besides, we assume that the sphere radius r follows a distribution function N(r).  If
the number of spheres in a unit volume with radius between r1 and r2 is denoted as
 NV (r1, r2),

N r r N r drV
r
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( ) = ( )∫
as shown in Fig. A-2.

Any function may be assumed, so long as its integration from 0 to infinity is
definite and equal to NV.  In this study of islets, Weibull distribution was employed, but
logarithmic normal distribution and gamma distribution may also be useful.  The Weibull
distribution is written as

N r N m r rV
m m( ) = ( ) ⋅ −( )[ ]−α α α1 exp .  

The advantage of employing this function has been described in Chapter 2 (see Fig. 2-
7).

The analysis starts with sampling of islets on microscopic sections, where we
employed chord length measurement by line sampling.  As shown in Fig. A-1, suppose
that on a section we randomly draw a test line, which in the figure is being drawn on
the frontal face of the cube.  Spheres emerge in the face as circles of various dimen-
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sion, and if the line is sufficiently long, it comes to intersect a series of circles and at
each intersection, generates a chord of length λ.  By measuring the length λ for about
200 chords consecutively, we obtain its sample distribution.  The problem is how to
estimate the distribution of sphere radius r and its parameters (mean, variance, etc.)
from this.

Fig. A-1.  The geometric model of dispersed spheres with varying radius r.  Measurement of chord length λ
generated by a sampling line randomly drawn on a section.

Fig. A-2.  N(r), the distribution of sphere radius.  The total area below the curve and delimited by r-axis
corresponds to NV, the number of spheres in a unit volume (numerical density).  The number, in a unit
volume, of spheres with radius ranging from r1 to r2 is given by the area hatched in the figure.
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Fig. A-3.  Hitting of a single sphere
Suppose that a single sphere, r in radius, is randomly hit and penetrated by a test

line as in Fig. A-3 left.  We assume that with this, a chord of λ in length is generated at
a distance x from the sphere center.  Here let us try to find the probability that at a trial
of penetration, a chord with length between λ and λ + dλ is generated. If the probabil-

ity is dP (λ, λ + dλ),

dP d
x

r
dxλ λ λ

π
π

, .+( ) =
2

2  (A1)

This would be understood by referring to the schema in the right part of the figure,
which expresses the equatorial plane of the sphere from a viewpoint along the pen-
etrating line.  The sampling line can hit evenly any corner of this circular plane, and a
chord of length (λ , λ + dλ) is generated when the narrow concentric belt, dx in breadth,

is hit by the line.  Therefore dP (λ, λ + dλ) corresponds to the area of the belt divided
by the total area of the equatorial plane, as in the above.

On the other hand

λ2
2 2

4
+ =x r . (A2)

By differentiating (A2)

λ
λ

2
2d xdx= − . (A3)

From (A1) and (A3) we obtain

dP d
r

dλ λ λ
λ

λ, .+( ) =
2 2     (A4)

by discarding the negative sign.

Fig. A-3.  (Left) Hitting of a single sphere with a sampling line.  (Right) The probability P(λ, λ + dλ) that the
line generates a chord ranging [λ, λ +dλ] is given by the ratio of the hatched area to the whole circle.
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Fig. A-4.  Sampling of spheres by penetrating the space with a line
Now let us extend the discussion to a space in which a number of spheres are

dispersed.  Suppose a cubic space as in Fig. A-4, where a cube with edges of unit
length contains a number of spheres with different radius r.  Of course we assume that
r follows N(r).  The number of spheres contained in the cube is NV because the cube is
of a unit volume.

Now we consider that the cube is penetrated by a random test line which is paral-
lel to one of the edges.  A number of spheres would be hit by the line as shown in the
figure.  In this situation, we try to find the expected number dN (r, r + dr) of spheres
that are hit by the line and are between r and r + dr in radius.  If the number of spheres
between r and r + dr contained in the cube is expressed as dNV (r, r + dr),

dN r r dr N r drV , . +( ) = ( )
For a sphere r in radius, the area of the equatorial plane is πr2, which therefore means
that the probability that the sphere is hit by the line is πr2 (note that the area of the side
of the cube is 1).  Accordingly,

dN r r dr r N r dr, .+( ) = ( )π 2                     (A5)

A chord of λ can emerge from spheres of various r, and a sphere of r can generate
various length of chords.  Therefore in the next place, we try to define the expected
number of chords between λ and λ + dλ in length that are generated from the spheres
between r and r + dr in radius.  If the expected number of such chords is
dF′[(λ, λ + dλ) | (r, r + dr)], it is obtained by multiplying dN(r, r + dr) and dP(λ, λ +
dλ).  Hence, from (A4) and (A5),

dF d r r dr N r drd′ +( ) +( )[ ] = ( )λ λ λ
π
λ λ, | , .  

2
(A6)

A chord λ in length can arise from spheres of any radius equal to or larger than λ/2.

Fig. A-4.  Sampling of spheres by penetrating the space with a sampling line.  For explanation see the text.
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Accordingly, we obtain the total number of chords dF(λ, λ + dλ) that are generated by

line sampling if we integrate (A6) with regard to r from λ/2 to infinity, as

dF d N r dr dλ λ λ
π

λ λλ, .+( ) = ( )












∞

∫2
2

One can find in this equation that dF(λ, λ + dλ) is expressed as a product of dλ.  Thus
we obtain

        F N r drλ
π

λλ( ) = ( )
∞

∫2
2

     (A7)

which relates the distribution function of sphere radius N(r) with that of chord length
F(λ).  Based on this, now we can calculate the parameters of N(r).

We define In(λ), the n-th moment of λ, as

I F dn
nλ λ λ λ( ) = ( )

∞

∫0 .          (A8)

On account of (A7), the equation contains parameters of N(r).  Now consider the 0th,
1st and 2nd moments.  According to the definition of In(λ), the 0th moment I0(λ) corre-

sponds to the expected number of chords, the 1st moment I1(λ) to the sum of λ, and the

2nd moment I2(λ) to the sum of λ2, each per a unit length of sampling line.  Thus,
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If N(λ)L, ∑(λ)L, and ∑(λ2)L  are replaced with the corresponding measurement data, we
have a set of simultaneous equations.

The equation (A8) can be re-written by replacing F(λ) with (A7), as

        I N r drdn
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π
λ λλ( ) = ( )+
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∫∫2
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2
0

.        (A9)

By solving the above simultaneous equations, the parameters of N(r) can be obtained.
Fortunately, if we assume Weibull distribution, the integration in (A9) is analytically
soluble as follows.

In (A9), we exchange the sequence of integration taking in account that r � λ/2.
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Thus,
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Here we replace N(r) with Weibull distribution function, as
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Make a substitution of

α r tm( ) =

and on account of

r
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(A10) can be re-written into
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Now we find that in (A11), the integration has been transformed into the form of
gamma function:

Γ ( ) .x t e dtx t= ⋅− −
∞

∫ 1

0

With this, (A11) is reduced to:
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Further, (A12) can be transformed into
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on account of the basic property of gamma function,

Γ Γx x x( ) = −( ) −( )1 1 .
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Thus, the above set of simultaneous equations are reduced to

I
N

m m
NV

L0 2

2 2
λ

π
α

λ( ) = 





= ( )Γ

I
N

m m
V

L1 3

4 3
λ

π
α

λ( ) = 





= ( )Γ Σ

I
N

m m
V

L2 4
28 4

λ
π
α

λ( ) = 





= ( )Γ Σ .

By substituting the measurement data for N(λ)L, ∑(λ)L and ∑(λ2)L, respectively, we can
calculate the parameter values NV, α and m.


