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Chapter 7

Some Other Topological Problems in
Microscopic Pathology

In making microscopic diagnosis of various organ changes, we often face problems
that will better be approached if we are equipped with knowledge about the ABC of
topology.  Already, topological way of thinking has been introduced in Chapters 5 and
6, in the former of which it was pointed out that in distinguishing among variously
differentiated adenocarcinoma and adenoma, changes of glandular skeleton serve as
equally important a clue as changes of individual cells.  However, so long as 2-D
sectional images are examined, changes of structure in this aspect only provide the
observers with a vague sense of abnormality.  Only when visualized in 3-D pictures,
the abnomalities of carcinomatous glands were disclosed so clearly as to allow us to
define in accurate geometric terms how and to what degree the glandular structure is
deviated from the norm.  The deviation proved to involve the inner connectivity of
normally tree pattern: generation of redundant branches that creates a network, or par-
tial loss of branches causing the network to crumble into parts.

There are also similar aspects in the interpretation of 2-D microscopic images,
and here too, we are assisted by applying the topological way of thinking.  This is
because sometimes in a 2-D section of diseased organs, structural changes of non-
metric character play an essential role in creating the picture.  Again, such changes
have nothing to do with the length, area, volume or angle, but are associated with
features sustainable during continuous transformation, as the number of holes con-
tained in a network.  All these features belong to the aspect of morphology where one
can measure the grade of deviation by applying topological parameters.  Added in this
chapter are some other examples of such problems.

a)  Changes of pattern from chronic hepatitis to cirrhosis

Cirrhosis, chronic hepatitis and intermediate stage (Figs. 7-1, 7-2)
To be shown as the first example is the change of microscopic pattern from chronic

hepatitis to cirrhosis.  On what criteria do we differentiate between the two conditions
microscopically?  Nowhere we can draw a clear borderline.  The whole process ad-
vances continuously, and we can only compare between arbitrarily chosen two livers
and discuss, which of the two is more (or less) advanced.  When we have a disease of
an organ that shows a continuous transition of picture from one stage to another, its
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progression must be the very object to evaluate with a parameter, i.e., in terms of
continuous quantity.  Classification into separate groups is a time-honored method of
study, that however works, strictly speaking, only when one can assume that the object
comprises groups that in themselves are not continuous.  To this problem, however, we
will recur in the next chapter.

Fig. 7-1.  Three different microscopic patterns of chronic liver diseases.  A: advanced cirrhosis with com-
pleted nodulation.  C: chronic hepatitis wherer nodules are not well separated.  B: an intermediate pattern
between A and C.  Gomori’s silver stain.  Reproduced from Takahashi and Matsumoto: Tohoku J exp Med
(1980), 131: pp. 322.

Fig. 7-2.  Two-D topological difference between cirrhosis (c) and chronic hepatitis (d), related to their 3-D
structure (a, b).  Reproduced from Takahashi and Matsumoto: Tohoku J exp Med (1980) 131: pp. 315.
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Now look at Fig. 7-1A.  This is from an advanced cirrhosis where the micro-
scopic section was silver-impregnated by Gomori method.  One can find a typical two-
phasic pattern, with the interstitial zones stained black and the regenerative nodules
left unstained.

In Fig. 7-1C, a liver with chronic hepatitis is shown in order to compare with
completed  cirrhosis.  In the parenchymal zone, there seems to be a tendency to swell
with regeneration of hepatocytes, as shown by its partially rounded contour convex
toward the interstitium.  Still, the pattern of hepatic changes has yet to be qualified as
cirrhosis, with quite incomplete nodulation.  One can say at least that the pattern corre-
sponds to a pre-cirrhotic condition, which cannot be expressed as real cirrhosis until
necrotic foci have arisen one after another, adding to the preformed interstitial zone,
and the parenchymal zone has undergone far more advanced nodular regeneration.
The transition of pattern from chronic hepatitis to cirrhosis progresses along a continu-
ous course, where morphologically no borderline exists separating the two conditions.

Then what is the difference in the above two patterns?   By comparing the two,
one may notice that it is the connectivity of the two phases that essentially differs.  In
cirrhosis (Fig. 7-1A), the interstitial phase is connected as a whole, separating the
parenchymal zone into independent nodules.  In contrast, we have a reversed state in
chronic hepatitis of Fig. 7-1C, where it is the parenchymal zone that is connected over
the entire picture, while the interstitial zone is split into separate parts.

There are of course a continuous series of intermediate stages.  In the liver shown
in Fig. 7-1B, both the parenchymal and the interstitial zones are halfway connected.
Here the two phases seem to be embracing one another, forming an arabesque pattern.
Pathologists may waver at this picture in deciding which diagnosis is more pertinent,
chronic hepatitis or cirrhosis.

Three-dimensionally, as in Chapter 6, a liver with chronic hepatitis as well as
cirrhosis has a parenchymal network as a common skeleton.  Therefore the difference
in 2-D pattern between the two conditions does not seem reflecting an essential differ-
ence in the skeleton.  It appears that as in Fig. 7-2, the pattern of separate nodules in
cirrhosis (c) is a 2-D section of nodules that in the three dimensions, are slightly con-
nected (a).  On the other hand, in chronic hepatitis the pattern of aggregated nodules
(d) is likely to originate from a 3-D structure where the nodules are more deeply con-
nected (b).

Various patterns related with angles subtended by interphasic curves  (Fig. 7-3)
As above, a liver with chronic hepatitis passes through a continuous series of 2-D

microscopic pictures as it advances toward the terminal stage of cirrhosis, and now we
are dealing with a connectivity change in a two-phasic pattern, a process that consists
in a gradual separation of nodules from initially connected parenchymal zone.  In fact,
pathological diagnosis of cirrhosis solely depends on the grade of nodular separation
in microscopic pictures.  In the following, let us consider how we can describe the
degree of advancement toward cirrhosis, establishing an index of connectivity with
which to describe different 2-D patterns (Takahashi and Matsumoto, 1980; Takahashi,
1982).

Connectivity in a 2-D, 2-phasic pattern can be translated to the curvature of linear
interphasic boundaries, or interphases.  In Figs. 7-3a and 7-3b, we assume that the non-
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shaded areas are parenchymal, and the shaded areas are interstitial phase.  Pay atten-
tion to the curves delimiting the two phases.  In Fig. 7-3a, we take a minute segment S
of curving interphase, and define the angle θ  s  which is “subtended” by the segment.  It
corresponds to the angle between the normals drawn at the both ends of S.  Here, plus
and minus angles are to be distinguished according to whether, the interphase is con-
vex or concave when viewed from the parenchymal phase.  If S is convex toward the
interstitium, θ  s  shall be plus and denoted by θ  s

+, while it shall be minus (θ s
–) if S is

concave.
Now let us define θ A, the total sum of angles in an area A, in two different forms.

One is the absolute sum θA(abs), the sum of absolute values, in which we discard plus
or minus.  The other is the net sum θ  A(net), in which θ –  is added as minus angles.
Accordingly,

θ A(abs)  =  θ  A
+ + |θ  A

– |  =  θ  A
+  – θ  A

–

and
θ  A(net)  =   θ  A

+ + θ  A
–.

It may be clear from the definition of θA
+ and θA

– that θA(abs) � 0, and θA(abs) �
θ  A(net).

To what values  θ (abs)  as well as  θ (net)  amounts is to be shown in various
examples.  In Fig. 7-3b, there is a nodule in the right upper part, where the contour is
entirely convex along the circumference, and here, both θ(abs) and θ(net) are +2π,
because there is no minus angle.  In a “lobulated” pattern in the middle of the figure
where two nodules are connected, minus angles develop at the places of constriction.
In this pattern, θ(abs) � 2π because lobulation generates redundant plus angles that

Fig. 7-3.  a: definition of angle θ s “subtended” by a minute segment S of interphasic boundary curve.  The
non-shaded areas are the parenchymal phase, the shaded the interstitial phase.  θ s is defined as a plus angle
if the segment S is convex toward the interstitium; it is minus if S is concave.  b: three different figures
surrounded by a closed curve are correlated to the total angle subtended by the perimeter.  For details see the
text.  Reprinted from Takahashi and Matsumoto: Tohoku J exp Med (1980) 131: pp. 315.
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make the total θ  

+ larger than +2π and moreover there are minus angles that are added
as absolute values.  But θ(net) remains always +2π in such an indented shape because
the redundantly formed plus angles are exactly offset by the minus angles.  Next, there
is a hole in a nodule in the left upper part of the figure.  If the interphase is concave
toward the hole along the entire circumference, no plus angle exists.  Therefore θ (abs)
= +2π and θ(net) = –2π .

The index of nodular separation ρρρρρθ θ θ θ θ      (Fig. 7-4)
Based on the above, we define ρθ , the index of nodular separation, as

ρθ  = θA(net) /θA(abs).  (7-1)

One can see in Fig. 7-4 how ρθ  describes a series of patterns that are different in terms
of connectivity of the two phases.  In the left upper figure (a) where all the nodules are
round with the interphasic curve always convex toward the interstitium, ρθ  = +1.0,
because θ (net) is +2π for each nodule and equal to θ(abs).  With beginning “lobula-
tion” of nodules due to aggregation as in the right upper figure (b), 0 � ρθ � +1.0

Fig. 7-4.  Various patterns described with the index of nodular separation ρθ .  When ρθ is +1.0 (upper left),
the nodules are constantly convex toward the outside.  As internodular connection begins (upper right), ρθ

becomes smaller.  When ρθ is 0, it describes an arabesque, where the parenchymal and interstitial phases
embrace one another (lower left).  A negative ρθ implies a reversed pattern (lower right) with the interstitial
phase disconnected into separate parts. Reproduced from Takahashi and Matsumoto (1980): Tohoku J Exp
Med 131, pp. 318.
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because minus angles, developing at the places of constriction, make θA(abs) larger
than θ A(net).  As aggregation advances, ρθ  becomes smaller, and when it reaches 0, the
pattern corresponds to “arabesque” as in the left lower figure (c), in which the two
phases are embracing one another.  If nodular connection advances further, we get a
pattern of separate interstitium (d: right lower), or a reversed pattern, where ρθ � 0.

Thus, the parameter describes a series of differently connected patterns as a con-
tinuous variable.  If applied to liver diseases, the larger the value of ρθ , the more
advanced the cirrhotic changes, and vice versa.

Determination of ρρρρρθθθθθ  by tangent counting (Fig. 7-5)
ρθ is calculated by the equation (7-1), but how to estimate the total angles θ  A

+ and
θ  A

– in an area A?  These are obtained very easily by applying the tangent counting
method proposed by DeHoff (1968, 1970).  Consider, as in the upper part of Fig. 7-5,
a rectangular area A which we assume to be sufficiently large and contain interphasic
curves randomized with regard to their orientation.  Let the shadowed area be the
interstitial, and the non-shadowed area the nodular phase, respectively.  Here we at-
tempt to “sweep” the area with a line, for example the upper side of the rectangular,
that is to be translated downward as the test line.  With “sweeping,” this line comes to
contact at many places with the interphasic curves, generating tangents as denoted by
symbols � and ×.  It may be clear that the more meandering the curves, the larger the
number ΤA of tangents generated, which means, the more θ  A is contained in the area A.

Statistically, a tangent occurs at every π of angles “subtended” by the interphasic
curves, if the area A is sufficiently large and the curves are randomized in their orien-
tation.  This would be understood intuitively as follows.  We assume, as in the lower
part of Fig. 7-5, that the linear interphasic boundaries in A are entirely split into a large
number of sufficiently minute, elementary arcs, each of which subtends a minute angle
dθ.  Let us pay attention to an elementary arc and consider the expected number dT of
tangents that occur at the arc (of interest) when the area A is swept by a test line.
Suppose that all dθ  s in A, together with the arcs, are collected by parallel translation to
a point as in the right part of the figure.  Then we can see a circle having an angle of 2π
may be formed many times.  Because sweeping generates a tangent at every hemicycle
(π), the probability that it occurs at the arc (of interest) subtending dθ is dθ /π.  Accord-
ingly, if the total expected number of tangents in A is ΤA,

T dT d absA
A A

A= = = ( )∫ ∫
1 1

π
θ

π
θ ,

and we obtain

θ  A(abs) = π � ΤA
 .

An accurate mathematical derivation will be found in the literature (DeHoff, 1968;
Takaki and Arai, 1993).  The estimate of θ  A

+ and that of θ  A
– are obtained by distin-

guishing between the tangents generated at convex (�) and concave parts (×) of curves.
If the tangent number at convex and concave curves are denoted as ΤA

+ and ΤA
–, re-

spectively,
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θ  A
+  =  π ·ΤA

+

and
θ  A

–  =  –π ·ΤA
–.

A

Fig. 7-5.  Measurement by tangent counting of θA, the total angles subtended by the curving interphasic
borders in an area A.  For explanation see the text.  Reproduced from Takahashi and Matsumoto: Tohoku J
exp Med (1980), 131: pp. 319 and 321.
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ρρρρρθθθθθ  estimated in various liver diseases (Fig. 7-6)
ρθ  was obtained by measurement on seventy autopsy livers with different types of

chronic diseases, including cirrhosis with or without hepatoma (hepatocellular carci-
noma), chronic hepatitis, subacute hepatits and biliary cirrhosis (Fig. 7-6).  These di-
agnoses were given microscopically by a number of pathologists in advance of mor-
phometry.  In cirrhosis, the obtained values of ρθ  range from –0.21 to +0.64.  That even
the highest value is far lower than +1.0 may be understood by taking into account the
3-D structure of cirrhosis where the nodules are mutually joined to form chains (see
Figs. 6-4, 6-5 and 6-9), producing indented contour of nodules.  Cirrhoses were di-
vided according to whether or not harboring hepatoma.  In the group with hepatoma
the mean ρθ  is +0.07, a value much lower than +0.27 in the group without hepatoma,
and the difference is significant at p < 0.01.   Thus, seemingly less completed cirrhosis
is likely to be rather more prone to cancer development.  The mean ρθ  was negative in
all the remaining groups; –0.102 in chronic hepatitis, –0.023 in subacute hepatitis and
–0.095 in biliary cirrhosis.

b)  Two types of glandular tumors: papillary and tubular

Intraductal papilloma of breast: papillary and tubular types (Figs. 7-7, 7-8)
The glandular epithelium is a generic term for the epithelium that consists of

glandular or secreting cells.  If we introduce a term “glandular tumors” to express
tumors developing from glandular epithelia, it includes a wide range of various tumors
like adenoma, papilloma, adenocarcinoma and so on, totaling in frequency up to the
largest share of tumors pathologists encounter in their routine diagnostic practice.  Look-
ing through the various pictures of glandular tumors, one may notice that there are
basically two types, i.e., “tubular” and “papillary” types.

Figures 7-7 and 7-8 present typical microscopic pictures.  These are tumors of the

Fig. 7-6.  Index of nodular separation ρθ estimated in various liver diseases.  Reproduced from Takahashi
and Matsumoto: Tohoku J exp Med (1980), 131: pp. 323.
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Fig. 7-7.  Intraductal papilloma of the breast: papillary pattern.  The tumor consists of finger-like rods, all
having fibrovascular stroma and covered by a monolayer of epithelial tumor cells.  Extending around the
tumor cells is the void space, into which the glandular epithelia secrete their products. Hematoxylin-eosin
stain.

Fig. 7-8.  Intraductal papilloma: tubular pattern.  Here one can find multiple tubes that penetrate the stromal
phase.  The inner surface of the tubes is covered by tumor cells.  The products of tumor cells are secreted into
the lumina of tubes which in this pattern are the phase of void. Hematoxylin-eosin stain.
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breast, both designated as intraductal papilloma, about which we already discussed in
Chapter 4.  In Fig. 7-7, the tumor appears consisting of numerous finger-like rods,
each having a stroma made of connective tissue which is covered by epithelial tumor
cells, presenting a form that may adequately be called a papillary tumor.

In Fig. 7-8, however, one can find a different pattern.  Formed here are multiple
tubes.  They are separated by connective tissue stroma, and the neoplastic glandular
cells are extending so as to cover the inner surface of the tubes, a pattern that can be
expressed as a tubular tumor.  Although conventionally diagnosed as intraductal papil-
loma, this type of tumor seems to be found not infrequently on microscopic examina-
tion of intraductal tumors of the breast.  There are also intermediate tumors in which
papillary and tubular patterns co-exist in various proportion.  Thus, we find here a
lesion which can present a series of different patterns between the two extremes.  As to
be shown, these varying patterns can exactly be defined from a connectivity point of
view.

Topological difference between papillary and tubular patterns (Fig. 7-9)
Here again, we face the same problem as we saw in the foregoing section.  Figure

7-9 is a schema explaining in what aspect the two patterns differ.  Both papillary and
tubular tumors consist of two phases, the stroma (shaded in the figure; one may also
call interstitium) and the void (non-shaded).  The proliferating tumor cells are lining
along the interphasic border, while both of the phases are not in themselves a tumor.
The stroma is an indispensable component of tumor because it contains blood vessels
feeding the growing tumor cells.  The void corresponds to the exterior spaces where
products secreted by the tumor cells flow in, stay and are carried through.

Now, let us examine the connecting relation of the two phases.  First we realize

Fig. 7-9.  Papillary vs. tubular tumors: their topological difference.  In the papillary tumor (left), the void
phase (non-shaded) is connected, separating the stromal phase (shaded) into pieces.  The tubular tumor
(right) corresponds to the reversed state, where the stromal phase is totally connected, disuniting the void
phase.  Thus the difference underlying the two patterns is reduced to that of topology.
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that in the papillary tumor, the void phase is connected as a whole, separating the
stromal phase into many pieces.  In contrast, in the tubular tumor the connecting rela-
tion is reversed: the stroma is totally connected, and inevitably the void is discon-
nected into separate tunnels.  Thus we understand that the difference between the two
patterns is defined by connectivity, i.e., which of the two phases is connected, contain-
ing the other.

The situation is quite the same as what we saw in the livers with chronic hepatitis
and those with cirrhosis.  Consequently, also in the intraductal tumors of breast, we
can apply the quantitative expression with ρθ  to measure the degree to which a given
tumor is papillary or tubular.  This will help us correlate the grade of “papillarity” or
“tubularity” with clinical or biological features of glandular tumors.  Recently, Sasaki
et al. attempted to evaluate the pattern of intraductal papillomas with ρθ  by
micromorphometry on surgically excised breast from 40 patients.

Morphometry of intraductal papillomas (Fig. 7-10)
Morphometry was performed on silver-impregnated sections.  Figure 7-10 is an

example of tubular tumor where the interstitial phase, comprising collagen, is stained
black.  As the interphasic border, we defined the basement membranes of the prolifer-
ating glandular cells, disregarding the tumor cells which were included in the void.
Measurement was made with a microscope equipped with tessellated eyepiece of grid-
type as entered in the figure, where the parallel transverse lines allowed the observer to
find the places where a tangent with basement membranes would occur.  Using the
grid, point counting was performed at the same time to estimate the volume density of
the stromal phase Vv (s), as illustrated in Chapter 2 (Figs. 2-1, 2-2, 2-3).

Fig. 7-10.  Microscopic tangent counting for the pattern analysis of intraductal papilloma.  The places where
a tangent occurs between the interphasic border and the transverse parallel lines, are detected as the picture
is slowly moved in the direction vertical to the lines.  VV(s), the volume density of stroma, can simulta-
neously be estimated by point counting.  Gomori’s silver stain.
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Obtained values of ρρρρρθ θ θ θ θ  and its correlation with Vv     (s) (Fig. 7-11)
Figure 7-11 presents the result of measurement, with ρθ  in the abscissa and Vv (s)

in the ordinate.  This time, ρθ  was defined as an index of tubularity: the larger the
value, the more tubular the pattern, and the smaller, the more papillary.  When ρθ  = 0,
the pattern consists of a mixture with tubular and papillary components, each having
an equal share.  As shown, ρθ  ranges from –0.5 to +0.7, with a mean of +0.14.  A mean
value that proved to be plus demonstrates that in intraductal papilloma as a whole,
tubular pattern predominates over papillary.  Therefore, strictly speaking, “intraductal
tubular adenoma” may be a more appropriate term than intraductal papilloma.

There is another finding which is more intriguing.  One can see a positive corre-
lation between ρθ  and Vv (s), the volume density of the stromal zone.  The correlation
coefficient, calculated at +0.60, is significant at p � 0.01.  It demonstrates that, of the
intraductal tumors of the breast, the more tubular the pattern, the larger the volume
ratio of stroma contained in the tumor, and vice versa.  We think this is a result quite
significant in studying the morphogenetic difference between the two types of glandu-
lar tumors.

Morphogenesis for tubular and papillary tumors (Figs. 7-12, 7-13)
Figure 7-12 is a schema illustrating an assumption on the morphogenesis of tubu-

lar and papillary tumors.  The figure in the upper part means a normal mucosa of
mammary duct where a monolayer of epithelial cells are lining along the surface.  The
cells are laid on a basement membrane covering the stroma (shaded), the connective
tissue that lies beneath and holds the membrane.  The right lower figure expresses a

Fig. 7-11.  Index of tubularity ρθ estimated in 40 intraductal papillomas.  ρθ is presented in the abscissa, and
VV(s) in the ordinate.  The mean ρθ is +0.14, showing that in the microscopic pictures, tubular pattern domi-
nates over papillary, betraying the term “papilloma.”  Interestingly, there is a significant correlation between
ρθ and VV(s), showing that the more tubular the tumor, the more stromal component it contains.
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papillary tumor.  Here the epithelial tumor cells, proliferating so as to extend the epi-
thelial surface, grow faster than the connective tissue of stroma, and as the result, the
stroma gradually comes to be wrapped by the superficial tumor cells, resulting in the
formation of papilloma pattern.  Quite the opposite is found in the morphogenesis of
tubular tumor, as in the left lower.  In this tumor, the stroma grows at a speed higher

Fig. 7-12.  A schema of morphogenetic difference betwen tubular and papillary tumors.  For explanation see
the text.

Fig. 7-13.  Papillary and tubular tumors: difference in their 3-D structures.  Consider that the cubic space
contains an interphasic basement membrane covering the stromal phase that is under the mambrane.  The
upper part of the space corresponds to the void.  The membrane forms several mountains and depressions,
and if the cube is cut at Level 1, a papillary pattern emerges in the section, while at Level 2, a tubular pattern
will be produced.
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than the epithelial tumor cells, and this makes the void phase being contained by faster-
growing stromal phase.  The result will be the formation of tubular tunnels.

It is often said that with regard to the morphogenesis of various tumors, it is the
stromal tissue rather than the tumor cells themselves that determines the form (Sakakura
et al., 1976).  The present study seems to be giving a support to this concept.

In the above, the difference between papillary and tubular tumors has been dis-
cussed solely on 2-D sectional pictures.  Then, what difference is there in the 3-D?
Figure 7-13 is a schema correlating the 2-D patterns with the corresponding 3-D struc-
ture.  Imagine a form like geographical configuration which is meant to express the
basement membrane of glandular tumor.  We assume that the membrane is covering
the stroma that lies beneath.  Now one can see the membrane is elevated at several
places and is depressed between the neighboring mountains.  Suppose that this con-
figuration is sectioned with a plane parallel to the ceiling.  At Level 1, several sections
of mountains appear in the 2-D picture creating a papillary pattern, while at Level 2,
the ground depressions emerge as cavities, and this is equivalent to a tubular pattern.
After all, no critical point seems to exist in the 3-D structure corresponding to the
transition of connectivity in a 2-D section where the value of ρθ  changes plus and
minus.

c)  Hepatocellular carcinoma: cord and plate types

Normal hepatocytes and sinusoids (Fig. 7-14)
As another example, the microscopic feature of hepatocellular tumor is to be

Fig. 7-14.  Microscopic appearance of normal liver parenchyma.  The hepatocytes seem forming continuous
cords one cell breadth.  The void spaces surrounded by the cords are the capillalries (sinusoids).  Note that
the hepatocytes are continuous throughout the picture, while the sinusoids are all split apart by hepatocytes,
presenting a topological question of form.  Gomori’s silver stain.
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added as a case for the application of ρθ .  In Fig. 7-14 we revisit the normal intralobu-
lar parenchyma of the human liver (also see Figs. 3-26 and 3-27).  The section is silver
impregnated, with the hepatocytes stained wine red, their basement membranes black,
and the capillaries (sinusoids) left as void spaces.  Here again we find in the hepatic
parenchyma a two-phasic structure comprising hepatocytes and capillaries, with the
basement membrane delimiting the two phases.  Now let us consider what a basic 3-D
structure the hepatocytes are forming.  The cells seem arranged in the form of continu-
ous rows one-cell thick.  Previously, an expression “liver cell cord” had been coined to
describe this arrangement of hepatocytes.  Though used for a long time, this term was
abandoned after Elias (1949) pointed out its inadequacy from a structural viewpoint.
Pay attention to the connecting relation between the two phases, and it may be clear
that the capillaries are all separated into pieces, while on the other hand, hepatocytes
are all connected over the whole picture, forming a continuum.  Then what a 3-D
structure should be assumed for each of them?  It may be understood that the capillar-
ies that are not united in a 2-D section, if integrated into 3-D by reconstruction from
serial sections, will certainly present a linear structure, or in other words, a system of
cords.  However, the hepatocytes that are all continuous in a section cannot be a cord in
the 3-D.  Instead, they make plates, or “muralium,” to use an expression by Elias.
Though having curved surfaces and finely anastomosed, the aggregates of hepatocytes
are certainly a plate facing the sinusoids with both of the  sides, so long as a small part
of the aggregate is concerned.  Today, hepatocytes are correctly said to form “liver cell
plates.”

Hepatocellular carcinoma: plate and cord types (Fig. 7-15)
Figure 7-15 presents two microscopic types of hepatocellular carcinoma.  These

are from the study of M. Nakamura et al. (1996) who noticed that there are a variety of

Fig. 7-15.  Two patterns of hepatocellular carcinoma: the plate pattern (left) and the cord pattern (right).
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tumors ranging over such a difference in the microstructural pattern.  In the left, the
carcinoma cells are forming plates.  Although cells making up the tumor are stacked
into a multilayer, the basic relation of the cell masses with the blood spaces is quite the
same as in normal hepatic parenchyma.  We call this the plate type tumor.

In the right, we can find a reversed pattern which corresponds to the papillary
type of intraductal breast tumor.  This may be called the cord type tumor.  What we
actually experience in most hepatocellular carcinomas is a mixture where the two pat-
terns are co-existing in a tumor in various proportion.  For some unknown reason,
these two types have been described commonly as “trabecular type” in conventional
classifications of hepatocellular carcinoma despite their apparently different patterns.
It may be clear that one can apply without any modification the above quantification to
these hepatocellular tumors.

d)  The pattern of zonal hepatocellular necrosis: Is the acinar theory tenable?

It was shown in the above examples that in 2-D, 2-phasic patterns, there is an
aspect in which the connectivity of phases plays a decisive role in the characterization
of pattern.  The different connectivity was measurable by “sweeping” the pictures with
a test line where the number of tangents gave the estimates of total angles “subtended”
by the interphasic border curves contained in an area, which then were correlated with
the connectivity of phases.  In reality, this methodology can be extended to the 3-D as
proposed by DeHoff (1968).  In this section, we show an application of this technique
to the pattern analysis of zonal hepatocellular necrosis of the liver.  The aim of this
study is to examine whether or not the acinar theory of Rappaport is tenable, baed on
the shape and distribution of necrosis.  The following is the summary of an attempt
performed by Y. Nakamura and Takahashi (1996, 1998).

Centrilobular necrosis in acute intoxication and chronic ischemia (Figs. 7-16,
7-17)
The zonal necrosis of the liver implies a confluent injury of hepatocytes involv-

ing a certain anatomical zone.  For example, sometimes at autopsy, we find in the liver
a necrosis of hepatocytes extending in the centrilobular zone or Zone 3 of Rappaport’s
acinus, although it remains a matter of question whether both of the zones are identi-
cal.  Look at Fig. 7-16.  This is a microphotograph of the autopsy liver from a patient
dying of acute cresol intoxication on the third day.  There are areas of coagulation
necrosis (deeply stained), and clearly, these have a central vein at the center (C).  On
the other hand, there are areas in which hepatocytes are sustained without signs of
necrosis, and these areas are connected as a whole, having portal tracts along the axis.
On this pattern, it may be reasonable to say that this is a centrilobular necrosis.

Figure 7-17 presents another liver with centrilobular necrosis.  This is from a
patient who died of chronic cardiac failure due to aortic insufficiency.  In this case
there are necrotic areas, faintly stained but strongly congested, and their distribution
seems to be essentially the same as in the foregoing case, having central veins along
the congested axis (C).  There is however a difference; the zone of parenchyma ex-
empted from necrosis tends to have a rounded contour convex toward the necrotic
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Fig. 7-16.  Necrosis of liver from a patient dying in an acute stage of cresol intoxication.  The hepatocytes in
the central zone of lobules are uniformly destroyed as evidenced by the presence of central vein (C), the
terminal hepatic venule, that is found at the center of necrotic area.  The problem is whether, in geometric
terms, the necrotic area sufficiently coincides with the form of what was defined as Zone 3 of Rappaport’s
acinus.  Elastica-Goldner stain.

Fig. 7-17.  Microscopic appearance of the liver in a patient who died of chronic congestive heart failure.
Here too, necrosis is confined to the zone around the central vein (C).  However, the shape of the necrotic
areas is different from the cresol case, with the surviving parenchyma having a rounded contour because of
nodular hepatocellular regeneration. Mallory’s stain.

C
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zone, perhaps because of nodular hepatocellular regeneration progressing during the
long course of disease, for a matter of years.  Here too, the areas that have survived are
continuous, with terminal portal tracts positioned along their axis.  In a patient in whom
the liver has undergone severe ischemia but only for a terminal short period, the pat-
tern of necrosis is quite the same as in the cresol cases.

The acinar model (Fig. 7-18)
The acinar model of Rappaport, illustrated in Chapter 3 (Fig. 3-6), is to be briefly

revisited, because it is the very pathogenesis of zonal hepatic necrosis due to intoxica-
tion or ischemia that this hypothesis was proposed to explain.  Using the schema of
Fig. 7-18, Rappaport maintained that the structural unit of the liver must be defined as
what he called acinus, a clump of parenchyma centered with a terminal portal venule
and flanked by terminal hepatic venules (THV; synonymous to the central veins).  The
model is so illustrated that an acinus may comprise three zones, Zones 1, 2 and 3,
which Rappaport says are arranged in the order of blood irrigation from the periportal
to areas around the THV.  Thus, Zone 3 (painted in pink) is assigned a position least
advantageous from a sustenance of hepatocytes point of view, irrigated with blood
delivering the lowest density of oxygen and nutrients that were already consumed in
Zones 1 and 2.  Hence, hepatocytes in Zone 3 are said to be the most liable to necrosis,
in case of ischemia as well as intoxication.  The problem with this theory is that with
regard to the distribution, Zone 3 was defined so that it may extend from around the

Fig. 7-18.  The schema of an acinus given by Rappaport.  The acinus is defined as a parenchymal clump that
has a terminal portal venule at the center and is flanked by terminal hepatic venules (central veins).  The
parenchyma in an acinus is divided into Zones 1, 2 and 3.  Of these, the hepatocytes in Zone 3 (pink),
situated farthest apart from the afferent portal venule and consequently, are said to be most vulnerable to
toxic or ischemic injuries. Reproduced from Rappaport et al. (1954): Anat Rec 119, pp. 11.
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THV toward the portal tract in a “sleeve-like” fashion and reach the place where the
three terminal portal venules come to join.  This setting, particularly the assumption of
“sleeves,” seems to have been necessary in devising this model because otherwise, an
acinus would not be separable even in a liver with Zone 3 necrosis, making it impos-
sible to define the acinus as an independent unit.  Accordingly, what we have to do is to
examine in livers with acute and uncomplicated zonal necrosis whether or not an aci-
nus discloses itself as a parenchymal clump independent from the neighboring ones.  If
it really does, then inevitably it ensues from the model that each of the non-necrotic
part of acini, Zones 1 and 2, be demarcated from the necrotic Zone 3 with a plane that
is convex toward the exterior over the entire surface.

In the hepatic lesions shown in Figs. 7-16 and 7-17 we have a 2-phasic structure:
the phase of necrosis and that of parenchyma that has survived.  In the following, let us
consider how we can examine the geometric nature of the curved interfaces extending
between the two areas.

The three types of surfaces (Fig. 7-19)
In solid geometry, surfaces are classified into three types: convex, concave and

saddle, as in the lower part of Fig. 7-19.  In case of zonal hepatic necrosis, let us take

Fig. 7-19.  (Upper) The curvature of surface at O is defined by a pair of principal radii r1 and r2. (Lower)
Three types of surfaces; convex, concave and saddle.
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the surviving parenchyma as the structure of interest, which is enveloped by a continu-
ous surface where the three types are considered to be co-existing as small patches
assembled in mosaic.  Assume as in the upper part of the figure, that we take a point O
in a small patch of surface convex toward the outside.  Then, a pair of principal radii of
curvature  r1 and r2, the minimum and the maximum radii, are defined so that both of
the radii extend from O along the normal toward the inside of parenchyma.  When the
surface is cut by a plane that contains the point O and the normal, the surface appears
on the section as a curve convex toward the outside.  In contrast, when O is taken at a
concave surface as in the center of the lower figure, both of the principal radii of
curvature turn out to be extending toward the outside.  Here, if the parenchyma is cut
with a plane containing one of the principal radii, and then with another plane contain-
ing the other, the surface will emerge in each of the sections as a curve concave toward
outside.  Besides, we have the third type of surface, the saddle surface, as in the right.
In this type, one of the principal radii of curvature occurs toward the inside, while the
other toward the outside of the parenchymal surface.  In reality, in the interphasic
membrane of zonal necrosis we are going to study, the saddle parts have the largest
share in the total solid angle produced by the interphase (see below).  Such being the
circumstances, in a 2-D section, we cannot simply regard the convex interphasic curve
as being a section of convex surface.  Either, the concave curve in section does not
always mean that it originates from a concave surface.  Thus, it is unavoidable for us to
study the matter from a 3-D geometry point of view.

The solid angle ωωωωω (Fig. 7-20)
The problem we are going to approach is whether the surface of the parenchymal

zone that has survived is convex toward the necrotic zone so uniformly as to make the
liver unit definable in the form of Rappaport’s acinus.

The surface curvature of the surviving areas can be defined with the solid angle
ω, as follows.  This is an expansion into 3-D of the 2-D relation which we confirmed to
hold between the curvature of an interphasic curve and the angle “subtended” by it
(see Figs. 7-3a and 7-3b).  In the left part of Fig. 7-20, a circle, r in radius, is shown.  If

Fig. 7-20.  The solid angle.
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we take an arc L in length, the curvature of the arc is measured with the angle θ  it
subtends at the center of the circle.  Therefore

θ = L /r .

The right part of the figure demonstrates its 3-D counterpart.  Here we suppose a
sphere of r in radius and a patch of surface on it with an area of S.  Also here, the patch
makes a curvature corresponding to the solid angle ω it subtends at the center of the
sphere.  The angle is given, as in the case of 2-D, by

ω = S /r 
2
 .

For a whole sphere, ω = 4π because S = 4π r 
2.  Thus the solid angle expresses the

spread of space from a point in the form of cone.

Generalization of ωωωωω into common surface (Fig. 7-21)
This is generalized into any small patch of surface taken arbitrarily from an ob-

ject of complicated form.  In general, in a minute patch dS arbitrarily cut from a non-
spherical surface, for example from a spheroid shown in the left part of Fig. 7-21, the
normals erected along the contour do not converge at a point.  Still, we can define dω
by replacing the normals with unitary vectors of the same direction which then are
brought so as to converge at a point by parallel translation in the space, as in the right
part of Fig. 7-21.  The tips of the vectors come to enclose a transformed surface on a
sphere, thus defining dω.  This is a process of projecting dS from an arbitrary patch
onto a spherical surface.

Fig. 7-21.  Solid angle of a common surface.
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Now we go back to Fig. 7-19 and imagine, as in the upper part of the figure, a
small square patch in the surface of parenchymal zone with edges of h in length.  If the
normal at point O is OQ , we can define the radius of curvature for each of a pair of
orthogonal arcs Α1Α 2 and Β1Β 2, as  r1 and  r2, respectively.  It is known that as the arcs
are turned around OQ, at the moment when  r1 comes to be the smallest, then  r2 is the
largest.  In other words, in this situation the curvature k1 of the arc Α1Α 2 is the largest,
and k2 of Β1Β 2 is the smallest.  The pair of curvatures k1 and k2 are called the principal
curvatures of the surface at point O.  Of course, if the angle subtended by Α1Α 2 is α,
and that by Β1Β 2 is β, then

k1 = α / h

k2 = β / h .

According to principles of solid geometry, we can describe dω at an arbitrary point O
in terms of Gaussian curvature K, as

dω = h 
2K,

where

K = k1  k 2 = 1/ r1 r2.

In the definition of Gaussian curvature K, plus and minus rs are to be discriminated.
Consider that the radius of curvature r is a vector originating at O.  Let r be plus when
the vector extends toward the inside of parenchyma, and minus when it extends toward
the outside (see Fig. 7-19).  Thus, both in convex and concave surfaces, ω is plus
because r1 r2 is [++] in the former and [– –] in the latter.  In a saddle surface, however,
ω is minus on account of the combination [+–].

ωωωωω in a constricted surface (Fig. 7-22)
Let us consider in some 3-D surfaces what the solid angle ω amounts to.  As

shown, ω is +4π for a sphere.  This holds true not only for a sphere but for any convex
bodies like an ellipsoid, where ω is constantly +4π.

Next, consider a shape of two spheres partially united as in the left part of Fig. 7-
22.  Because both the upper and lower spherical parts are larger than a hemisphere, ω
created by each of the convex parts can be described as [+2π + α] and [+2π + β],
respectively (α � 0, β � 0).  However, there is a circumferential zone of saddle sur-
face between the two spheres, which produces a minus ω corresponding to –[α + β].
Consequently, as a whole, [α + β] is offset, and we have a total net ω of +4π.  No
matter how many spheres are united into a single closed surface, the result is the same,
leading to the conclusion that a closed surface of any complicated shape has a net solid
angle of +4π, so long as there is no hole.  A saddle surface occurs at places of transition
between convexity and concavity, at a constriction, or as in the following, along the
margin of hole.

The right part of Fig. 7-22 demonstrates the surface of an open pot.  It has an
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external convex surface which is larger than a hemisphere, with an ω of 2π + α.  The
internal surface is entirely concave and therefore creates an ω of 2π + α as well.  Along
the margin of opening there is a round belt of saddle surface and this creates a negative
ω of –2α.  Thus, here too, the total ω amounts to 2 × (2π + α) – 2α = +4π, and we find
the above conclusion holds true.

ωωωωω in a torus: relevance to 3-D topology (Fig. 7-23)
In the next place, let us consider a torus, the surface of a doughnut, as in Fig. 7-23

right.  There is a belt of saddle along the inner surface of the hole, generating a nega-
tive ω of –4π.  It offsets an ω of +4π which, if there were no hole, would have been
generated by the closed surface.

This will be understood by making a simple ideal experiment.  We consider a
torus with a circular hole of r in radius, as in the figure.  Here suppose that we close the
hole by putting a sphere which also has a radius of r.  In this situation, ω for the whole
body must be +4π, because there is no longer a hole.  Next, assume that we take away
the sphere and restore to the original state of torus.  The sphere that was separated from
the body has an angle of +4π, and through this procedure no other surface was added
or subtracted, which is equivalent to saying that no ω was added or subtracted.  Which
shows that for the torus, ω is 0 because a solid angle of +4π was taken away from a
body of +4π.

Thus, ω = 0 for a torus with one hole.  If a surface contains two holes, then the
total solid angle amounts to

ω = +4π + 2(–4π) = –4π .

Fig. 7-22.  Solid angle of constricted surfaces.
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This can be generalized into

ω = 4π (m – c), (7-3)

where ω is the total angle generated in the space, m is the number of closed surfaces in
the space and c, the number of holes.  A closed surface having several holes is nothing
but a membrane, or an interface, covering a 3-D network.  An example of this sort of
surface was already found in cirrhotic livers where the interphase between the nodular
and interstitial phases presents as a continuous surface with many holes (see Fig. 6-9).
In the above equation, one can see how closely the solid angle generated by surfaces
correlates with the connectivity of network the surfaces are covering.

3-D tangent counting by sweeping the space (Figs. 7-24, 7-25)
Here too, we can apply tangent counting method to the estimation of total solid

angles contained in a space (DeHoff, 1968).  The principle is the same as we have seen
in 2-D pictures, where angles “subtended” by linear boundaries were estimated by
tangent counting, i.e., sweeping the sample area with a line.  In dealing with the prob-
lem of curved surfaces,  however, sweeping has to be done in the 3-D, requiring to
“sweep” by translating a plane through the space. This is a procedure of scanning the
space with serial sections.  In the schema of Fig. 7-24, we assume that a rectangular
space contains surfaces of various shape.  Imagine that we slowly move the ceiling
ABCD of the space downward by parallel translation, thus sweeping the space.  Then
the plane comes to touch the surfaces at various points, each time generating a tangent.

Statistically, a tangent occurs at every +2π of solid angle at convexity as well as at
concavity, while at a saddle, it occurs at an angle of –2π.  This may be understood in
Fig. 7-25 where, in the left, sweeping of sphere generates two tangents, each corre-
sponding to an angle of +2π, while in a torus, two tangents add at the saddle, each
producing –2π.  Therefore if, in a sample space containing a sufficient amount of
curving interfaces, we count the number n of tangents and at the same time discrimi-
nate among the tangents occurring at convex, concave and saddle surfaces separately,
the total ω generated by each of the three different surfaces is given by

Fig. 7-23.  Solid angle of a torus (right).
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Fig. 7-24.  A schema of 3-D tangent counting.  Imagine a rectangular space containing surfaces of various
shape.  Then consider that the ceiling ABCD of the rectangle is moved downward by parallel translation.
While moving, the plane comes to touch the surfaces at various points (small arrows), each time generating
a tangent.  Reproduced from Nakamura and Takahashi: Tohoku J Exp Med (1998) 184: pp. 217.

Fig. 7-25.  Sweeping: the cases of sphere and torus.
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ω (cvx) = +2π n (cvx)

ω (ccv) = +2π n (ccv)

ω (sdl) = –2π n (sdl)

where n(cvx), n(ccv) and n(sdl) denote the number of tangents generated at convex,
concave and saddle parts of interface.  Thus the total ω contained in the space amounts
to

ω = 2π {n (cvx) + n (ccv) – n (sdl)}.

Tangent counting on serial sections (Fig. 7-26)
Three-D tangent counting by sweeping a sample volume was performed on serial

sections of livers with zonal necrosis.  As usual, serial 2-D images of the interphasic
border between the necrotic and surviving zones were inputted consecutively into a
computer, together with the portal and hepatic veins.  While scanning the sampled

Fig. 7-26.  Counting of 3-D tangents between the test plane and the interphasic surfaces in the liver with
hepatocellular necrosis due to cresol intoxication.  Counting is performed upon the computer display as 3-D
reconstruction advances, as in the figure where the test plane for sweeping is the display itself that is moved
in the direction vertical to the section.  The green wireframes express the interphasic borders between the
necrotic and surviving areas.  Red are the portal, and blue are the hepatic veins.  Reconstruction was de-
signed so as to progress at a large between-steps interval of 16 µm.  In the figure one can recognize several
points where a tangent has occurred, for example at A and B.  One can recognize that at B, both of the two
tangents were generated at a saddle plane.  Whether the surface is convex or cancave at a point like A can be
determined by observing how the nearby surface changes with the advancement of reconstruction.  Repro-
duced from Nakamura and Takahashi: Tohoku J Exp Med (1998) 184: pp. 227.
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volume in a computer display by advancing reconstruction, the places where a tangent
occurs could easily be recognized.  Whether a tangent arose at a convex, concave or
saddle part of interphase was judged by comparing the nearby contour lines, as shown
in Fig. 7-26, where a tangent (A) was confirmed arising at convex surface, and two (B)
at saddle.  Whether the surface like A corresponds to a mountain top or a bottom of
depression could be determined by observing what a 3-D form develops in the sur-
roundings as reconstruction progresses.

The result of 3-D tangent counting (Table 7-1)
The result of measurement is listed in Table 7-1.  Studied were autopsy livers

from five patients.  Cases 1 and 2 were selected to represent livers with acute necrosis,
both from patients dying of cresol intoxication, 60 and 90 hours after ingestion, re-
spectively.  The other three patients had suffered from chronic cardiac failure includ-
ing cardiac amyloidosis (Case 3), primary pulmonary hypertension with right ven-
tricular failure (Case 4) and aortic regurgitation (Case 5), in all of whom zonal hepato-
cellular injuries were considered attributable to chronic ischemia and/or congestion.
Signs of cardiac failure had lasted 2 years and 8 months (Case 3), 10 months (Case 4)
and 4 years and 3 months (Case 5).

Here, the numbers of tangents, n(ccv), n(cvx) and n(sdl), can directly be trans-
lated into the share of the corresponding solid angles ω (ccv), ω (cvx) and ω (sdl) in the
total solid angle contained in the sampled volume, because, as shown, the value of ω is
proportional to the number of tangents.  First of all, it is noteworthy that in the acute
cases, the share of tangent number at convex surface was only 6% and 3%, while the
share at concave surface was as high as 25% and 22%.  In contrast, in the chronic
cases, this ratio is reversed, with the number of tangents occurring at the convex sur-
face exceeding those at the concave sites.  Why, with time, the pattern has changed in
such a way may be clear.  Within a matter of years, with recurrent bouts of necrosis
followed by regeneration of hepatocytes that survivied, the pattern of lesion has gradu-
ally come to undergo secondary transformation due to nodular hepatocellular hyper-
plasia and collapse of necrotic areas.  Accordingly, in examining whether the acinar
theory can really hold as an anatomical and functional unit, it is crucial to study the

____________________________________________________________________________

  Liver         Sample   Number of tangents         ω in          Total

  weight (g)    volume(mm3)      n(ccv)          n(cvx)         n(sdl)        sample     genus
____________________________________________________________________________

 Acute

 Case 1 1,180 31.0    59(25%)       14(6%)    169(69%)    -192π      1.83×106

 Case 2 990 17.5 26(22%)         4(3%)     91(75%)     -122π      1.73×106

 Chronic

 Case 3 830 25.6 16(4%)     89(24%)    222(70%)    -234π      1.90×106

 Case 4 1,140 29.2 23(4%)   158(27%)    415(70%)    -468π      4.57×106

 Case 5 946 21.7 23(4%)   136(22%)    467(75%)    -616π      6.71×106

____________________________________________________________________________

Table 7-1.  The result of 3-D tangent counting in 5 livers with zonal hepatocellular injuries.
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pattern of liver lesion fresh from injury.  In chronic cases, we find the original shape of
injury modified with additional and secondary changes, where the liver has already
started advancing toward cirrhosis.  In the acute cases of cresol intoxication, there
remains no doubt about the shape of parenchyma surviving zonal necrosis.  The sur-
viving areas are cast into a shape where the surface concave toward the necrotic zone
far exceeds the convex surface.  Clearly, this must be quite the opposite to what has
been maintained by those supporting the acinar concept.

3-D structure of acute zonal necrosis (Fig. 7-27)
Figure 7-27 presents a 3-D reconstruction of the liver in acute cresol intoxication

(Case 1).  Clearly, the surface of the surviving parenchyma, presenting as green masses,
comprises concave, convex and saddle parts but concavity is likely to be more com-
mon than convexity.  At no place, necrosis (void) is extending as a sleeve-like flap
reaching the portal tract.  The parenchymal areas that survived necrosis are only uni-
formly surrounding the segments of terminal portal veins (pink), without being sepa-
rated into “acini” demarcated from each other.  These are findings least expectable
from the acinar model.  At several places, one can find connections between adjacent
areas of necrosis, disclosing that the overall shape of necrosis, and also that of the
surviving parenchyma, are a loose 3-D network.

Thus, the geometry of the interface between the necrotic and surviving phases is
a 3-D network.  As shown in Chapters 5 and 6, how densely the network is knit can be
given by the number of holes (meshes) it contains.  This is given by the value of c in

Fig. 7-27.  Computer-assisted 3-D reconstruction of the liver with acute injury due to cresol intoxication.
The viable parenchyma is painted in green, with the necrotic zones left as void spaces.  When viewed from
the parenchymal side, the interphasic surface seems mostly to be concave, a situation not compatible with
the model proposed in the form of acinar schema.  Reproduced from Nakamura and Takahashi: Tohoku J
Exp Med (1998) 184: pp. 227.
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equation (7-3), which corresponds to the genus given in the descriptions in the forego-
ing chapter (see Fig. 6-18).  Assuming that the specific gravity of the liver is 1.0, the
total number of meshes contained in the liver was calculated based on the ratio of the
sampling volume to the whole liver.  As in Table 7-1, the total number of genus proved
to be within a comparatively narrow range from 1.7 to 1.9 × 106 in both of the cresol
cases.  In the three cases with chronic heart failure, the number was shown compara-
tively larger in Cases 4 and 5.  In Case 5 where the disease lasted as long as four years
and 3 months, the network proved to be so dense as to have a genus number of 6.71 ×
106.  It is interesting that this is a value close to the number of holes in chronic hepati-
tis, where the total genus number (p

1
) was estimated at 6.10 × 106, showing that the

two livers share a skeleton that is topologically quite similar (Fig. 6-21).  Perhaps there
may be some reason for the hepatic microvasculature to deliver a network skeleton of
this density, but this belongs to what is to be studied in the future.

After all, the 3-D distribution and shape of acute zonal necrosis turned out to be
something quite different from what one would expect to see based on the acinar model.
Nowhere “sleeve-like” projection of necrosis was confirmed extending from around
the THVs and reaching the portal venule where three terminal portal twigs come to
join.  The surviving parenchyma was being covered by an interphase where concavity
toward necrosis was overwhelmingly predominant over convex surface.  All these are
not consistent in any respect with the pattern of necrosis which has to be induced from
the acinar model.

Then, what a unitary structure of the liver one should assume?   Our conclusion is
that from a 3-D structure point of view, any unitary concept is not necessary in under-
standing the structure-function correlation in the liver.  We think, the principle of the
hepatic microstructure lies in the isodistance between the terminal afferent and effer-
ent vessels, which is realized in the liver in a typical and perfect way compared with
other organs.




