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A Note on Intrinsic Geometry of Origami*

Koryo MIURA**

Institute of Space and Astronautical Science, Sagamihara, Kanagawa, Japan

Abstract. In this paper, the author presents a proposition of intrinsic geometry of
origami. It treats the geometric properties which are dependent only on the vicinity
of an arbitrary point on the surface of origami works. Based on the theory of curved
surfaces, the basic theorems of intrinsic geometry of origami are obtained. Using
the theorems, the relations of convexity/concavity of folds and the vertices are
studied. The result is also used to explain the particular characteristics of the so-
called Miura-ori.

1. Introduction

In general, the geometry of origami treats rather macroscopic aspects of the
form of origami works. The geometry which the author presents here is to treat the
theorems which are dependent only in the vicinity of an arbitrary point on the
surface of origami works, and it can be called intrinsic geometry of origami.

The Japanese word “origami” consists of two parts, that is, “ori = fold” and
“kami (gami) = paper”. In this sense of the word, origami is a mathematical process
giving a flat piece of paper appropriate folds and vertexes joining several folds,
which results in a polyhedral surface.

We study a curved surface by means of the fundamental magnitudes of the first
order and the consequent Christoffel symbols and Gaussian curvature, and we treat
it “intrinsically”. In the same way, we are able to study a polyhedral surface of
origami intrinsically, and can obtain such theorems which govern the relations of
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convexity/concavity of folds and the vertices of origami. Through this approach,
we can consequently establish a science of intrinsic geometry of origami.

In this paper, the author presents the basic theorems on the surface of origami.
The theorems are then used to exploit the properties of folds around a vertex. This
is the first approach toward the science of intrinsic geometry of origami. Many
drawings are used to provide the readers a visual glimpse on intrinsic geometry of
origami. The theorems also gives mathematical foundation of the map fold a la
Miura style, or Miura-ori, presented also in this book (Miura, 1993).

2. Gauss’s Spherical Representation

The Gauss’s spherical representation is very useful for the interpretation for
the Gaussian curvature and the excellent introduction was made by Hilbert and
Cohn-Vossen (Hilbert and Cohn-Vossen, 1932) and Coxeter (Coxeter, 1961). The
author would like to borrow the following description from Coxeter.

To obtain his spherical representation of a surface, Gauss considered the locus
of the end Q of a vector OQ = n where O is a fixed point and n is the unit normal
at a point P which varies on the given surface (Fig. 1).

G

Fig. 1

When P travels over a sufficient small region F, bounded by a simple closed
curve on the surface, Q travels over a corresponding region G of the unit sphere with
center O. Gauss defined the total curvature of the surface at P to be the limit of the
area of G and F where these regions are shrunk to single points.

lim < = k (1)
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The quantity K thus defined is called the Gaussian curvature of the surface at
the point P. Ithas also the well-known important property as follows: “The Gaussian
curvature is invariant by any inextensional deformation.”

3. Spherical Representation of Origami

The spherical representation can also be used for a polyhedral surface as shown
in Fig. 2 (Hilbert and Cohn-Vossen, 1932). In this figure, p, g, r, and s are the unit
normals of the sides P, Q, R, and S. In the right figure, p’, q’, 1", and s are the ends
of corresponding normals drawn from the fixed point O. Connecting these points
by large circles, we have a spherical polygon p’q’r’s” which is the spherical
representation of a closed curve on a polyhedral surface. We assumed here that the
closed curve on a polyhedral surface is constructed so that each curve connecting
the base of unit normals is orthogonal to the ridge line.

Now we are going to investigate the surface of origami based on the above
preparation. As is mentioned before, an origami work can be mathematically
described by a polyhedral surface. The mathematical expression of an origami
process is a transformation of a flat piece of paper into a polyhedral surface which
expresses something. We assume, of course, the surfaces of a thin paper are
sufficiently accurate model of the abstract definition of a surface, and thus hereafter
both surface and paper may be used in the same meaning.

The Gaussian curvature KX is zero for a flat piece of paper. This is the initial
condition before we start to fold. The folding process, that is, the transformation of
a piece of paper does not include any extensional deformation. (The stretching,
cutting, and gluing are prohibited for the orthodox origami.) Therefore, the zero
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Gaussian curvature is invariant throughout the process and of course throughout the
surface.
If we assume the area of the spherical representation G as
G=0

then, the zero Gaussian curvature condition is satisfied.

K=0
On the contrary, if we assume
G#0
then,
lim G G

K=limSoF20_ __
F0F limF limF
F—0 F—0

because G is determined solely by the normals, and that the normals in turn are
independent on the change in the closed curve (¥ — 0). Therefore, the latter as-
sumption is irrational and the quantity G must be vanished at any point of the
surface. Thus, it is proved that

G=0 (2)
In this way, we have arrived at the following theorem.
Theorem 1
“For a sufficiently small closed curve on the surface of an origami, the area

of the corresponding spherical representation G is zero.”

The proof of the above theorem can be done by another way. Using the wellknown
expression for G, Eq. (2) can be written by the following formula,

G=[l|KWgdu'du* =0 (3)

where g is the determinant of the first fundamental quantities of the surface, and u!,
u? are the coordinates. Because K = 0 on (!, 42) and g is finite, G must be zero. As
a matter of fact, the above theorem is valid for any surfaces of zero Gaussian
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curvature, such as origami including curved folds.
The invariance of G can also be proved and the following theorem is obtained.

Theorem 11
“For a sufficiently small closed curve on the surface of an origami, the area
of the corresponding spherical representation G is invariant with fold angles.”

It is shown by this analysis that the intrinsic properties of origami can now be
studied by means of the quantity G as well as K, both are zero everywhere on the
surface of an origami. Especially, the use of the quantity G is most convenient, as
we do not need to calculate a limiting value of a certain quantity.

4. One, Two, and Three Fold-Lines Join a Vertex

By means of the above theorems, we now study the intrinsic properties in the
vicinity of an arbitrary point on the surface of an origami. The main subject is the
relation of the number of folds at a vertex and their convexity/concavity.

4.1 One fold-line
We assume the case that there is only a single fold-line (like a half-line) on the
surface of an origami as shown in Fig. 3.

Fig. 3

We do not need to use the theorems in this case. The single fold-line does not
divide a plane into two parts (like a half-line), and then apparent two planes at both
sides of the fold-line are identical. Thus, there is no fold-line and the assumption is
wrong. Therefore, this case does not exist.
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4.2 Two fold-lines join a vertex
We assume two fold-lines, a and b, joining a vertex as shown in Fig. 4.

Fig. 4

In reference to the fold-line a, there exist two planes P and Q represented by
unit normals p and q in the normal plane of a. The spherical representation of it is
asegment p’q’ as shown in the right figure. In the same way, in reference to the fold-
line b, the spherical representation p't” is obtained. Because the normals q and r are
on the identical plane Q, p’q” and p'r” are identical, too. Because p’q” is normal to
aand b, the fold-lines a and b must be collinear. The area bounded by the spherical
representation p'q’ is zero and thus G = 0 is satisfied. It turns out that this is the
simplest of any origami works.

4.3 Three fold-lines join a vertex
We assume that the three fold-lines join a vertex as shown in Fig. 5.

Fig. 5
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Then there exist three different unit normals p, g, r, representing three planes
P, Q, R. The resultant spherical representation is a spherical triangle p'q’r’. As far
as p, g, and r are different from each other, the area of the triangle can not be
vanished. In conclusion, G = 0 is not satisfied, the assumption is irrational, and this
case does not exist.

5. Four Fold-Lines Joining a Vertex

5.1 Four fold-lines have a common sign (convex or concave)

We assume that all of the four fold-lines are convex, and four planes P, Q, R,
S are different from each other, then the spherical representation is a spherical
quadrangle p’q'r’s’, as shown in Fig. 6. The area of spherical polygon is given by
the following formula.

Fig. 6

4| a2 (@

where q; are the internal angles of the spherical polygon, and p is the radius of the
sphere. The first term in the bracket is called the spherical excess and it must be
positive if a polygon is a spherical polygon. The radius p is equal to 1 for the
spherical representation. The internal angles a; (i =1 ~ 4) and the vertex angles f;
are supplementary. Then,

iai+z4:ﬁi=47r (%)
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and K= 0,
4 4
Y Bi=2r D a=2xn

It results in a quadrangle whose sum of internal angles is 2 and the spherical excess
is zero. There is no such a spherical quadrangle, except that, it is a single point on
the surface. Therefore, the assumption is irrational. In conclusion, there is no four
fold-lines joining a vertex if these fold-lines have a common sign.

The above theorem can be extended to the case of n fold-lines with a common
sign as shown in Fig. 7. The equivalent equation to Eq. 5 for this case is

o]
NG

Fig. 7

Zn:ai+iﬁi=nn (6)

Because of K =0

n

iﬂi=2ﬂ.’ dYa;=(n-2)x

The sum of internal angles of this spherical n-polygon is the same as that of a planar
n-polygon. Thus, the spherical excess is zero, and there is no such spherical
polygon. Therefore, except n = 2, n fold-lines with a common sign does not exist.
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5.2 Three fold-lines have a common sign, one fold-line has the other sign

We assume that three fold-lines are convex and the other fold-line is concave,
and resulting four planes P, Q, R, S are different from each other. The spherical
representation is a skewed quadrangle p'q’r’s’, as shown in Fig. 8. In this figure the
direction of the closed curve, as indicated by the arrows, is to be noted. Due to usual
mathematical premise, the area enclosed by a closed curve in counter-clock-wise
is taken positive and the one in clockwise is taken negative.

Fig. 8

In Fig. 8, the spherical triangle p'q’t” has the positive area, while the shaded
spherical triangle r's’t” has the negative area. The area of a spherical triangle
depends only on the sum of internal angles. Then, the sum of internal angles of the
triangle p'q’t” is

a, +a,+0 (7)
while that of the triangle r's’t” is
(m—ay)+(m—ay)+0=2n—(az +ay)+0=a,+a, +6 (8)
Therefore, the total area of the spherical representation G vanishes.

This relation is valid for any combination of internal angles and thus any
combination of vertex angles. That means it is valid for any three-to-one fold-lines.
5.3 Orthogonal fold-lines

This is the most popular fold pattern seen everywhere in our daily life. The

structure of this fold consists of a pair of collinear positive fold-lines and a pair of
collinear positive and negative fold-lines, and that both intersect at a right angle
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(Fig. 9).
The spherical representation is the skewed spherical rectangle because of the
condition

o, =m/2. (9)

The quadrangle consists of a pair of isosceles spherical triangle with right base
angles. It should be noted that p’, q, r’, and s’ lines on the equator of the sphere.
Also, p”and s’, q" and r” are in the opposite positions, respectively. It means that,
the direction of normals p and s, q and r are in opposite directions respectively. It
is easy to understand this situation by folding a piece of paper. We find that the paper
is already folded up along the collinear convex fold-lines which divide the paper
convex to concave regions.

e}

Fig. 9

This remarkable result indicates that the orthogonal folding is not a single step,
but the sequential two steps of the simplest folding. In conclusion, there is no
simultaneous orthogonal folding.

5.4 Two convex and two concave fold-lines join a vertex

If two fold-lines are convex and other two are concave, as shown in Fig. 10,
and resulting four planes P, Q, R, and S are different from each other, the spherical
representation is again a spherical quadrangle p'q’r’s’.

This figure is quite similar to the case Subsection 5.1 (Fig. 6), where four fold-
lines with a common sign join a vertex. It should be noted, however, that the order
of the normals p’q’r’s” is clockwise in this quadrangle. It means the area of the
quadrangle is negative and thus the surface consists of hyperbolic points.

The result is that the area of the quadrangle can be vanished only if the four
normals are identical. Therefore, the initial assumption is irrational and there is no
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Fig. 10

two-to-two fold-lines joining a vertex.
6. Miura-Ori

The so-called Miura-ori or Miura-map consists of repetition of a fundamental
region, which in turn is composed of four congruent parallelograms (cf. Figs. 3, 4,
5 of the reference 1 (Miura, 1970) in this book (Miura, 1993)).

In the light of intrinsic geometry of origami derived in this paper, it turned out
that the Miura-ori consists solely of a single species of fold, the three-to-one fold-
lines joining a vertex (cf. Fig. 8 of reference 1 (Miura, 1970; see Miura, 1993)). It
is true that the Miura-ori is the second simplest origami only after the simplest,
collinear two fold-lines at a vertex.

The behavior of simultaneous deployment and folding of a Miura-ori can also
be explained by the properties inherited with the three-to-one fold-lines at a vertex.
In marked contrast to the Miura-ori, the orthogonal fold is actually the succession
oftwo simple steps. Furthermore, you can not reverse their order of deploying. This
may be the reason why you never observe any orthogonal fold patterns in a
randomly crushed piece of paper. It seems Nature likes angular folds rather than the
orthogonal one.

7. Conclusion

In this paper the author presents a proposition of intrinsic geometry of origami.
It treats the geometric properties which are dependent only on the vicinity of an
arbitrary point on the surface of origami works. Based on the theory of curved
surfaces, the basic theorems of intrinsic geometry of origami are obtained. Using
the theorems, the relations of convexity/concavity of folds and the vertices are
studied. The result is also used to explain the particular characteristics of the so-
called Miura-ori.
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