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Formation and Transitions of Patterns in Thermal Convection

Osamu SANO

Department of Physics, Faculty of General Education, Tokyo University of
Agriculture and Technology, Fuchu, Tokyo 183, Japan

Abstract. Experimental and theoretical studies of pattern changes in thermal
convections are made under simple boundary conditions. Firstly, typical convec-
tive patterns in thin horizontal fluid layer were visualized by tracer particles and
by shadowgraph method, from which formation of patterns is examined. Secondly,
thermal convection in a thin torus placed vertically in a nearly uniform negative
vertical temperature gradient was investigated either by flow visualization or by
direct measurement of flow field using a laser Doppler anemometer. The critical
Rayleigh number, the Rayleigh number dependence of the Reynolds number as
well as velocity profile of a quasi-one-dimensional flow along the loop were
determined. Three-dimensional cellular structures, which show periodic or
nonperiodic changes both in space and time at higher Rayleigh numbers, are
studied extensively. Formation and transitions of these cellular structures are
successfully explained by a set of new model equations with eight variables.

1. Introduction

Thermal convection is generated by the buoyancy force due to either the
heating of the lower part or cooling of the upper part of the fluid. This fluid motion
is opposed by viscous frictional force, as well as diffusion of the heat so as to
reduce the non-uniformity of temperature distribution. The ratio of these effect Ra
= (buoyancy force)/[(thermal diffusion) (viscous force)] = paATgd?/(kp) is called
the Rayleigh number. Here p, o, k and p are the density, thermal expansion co-
efficient, thermal diffusivity and viscosity of the fluid, respectively, while AT is
the temperature difference between characteristic vertical distance d, and g is the
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acceleration of gravity. For sufficiently small Ra-numbers, the heat will be
transferred through the fluid by conduction alone, in which macroscopic fluid
motion is not produced. But when Ra exceeds a certain critical value Ra,, mac-
roscopic fluid motion called convection is set up. The first experimental inves-
tigations on thermal convection date back to Thomson (1881) and Bénard (1900),
the latter of which has attracted greater attention due to the fascinating pattern of
regular hexagonal cells. There are, however, varieties of convective patterns
depending on the Rayleigh number, the Prandtl number Pr = v/k (v = p/p is the
kinematic viscosity), the shape and aspect ratios of the container, the type of
applied disturbances, the presence of surface tension, and so on.

2. Some Facet of Convective Patterns

2.1 Rayleigh-Bénard convection

The thermal convection in a horizontal fluid layer, in which the temperature
of the lower boundary is kept higher than the upper boundary, has been studied
extensively. The theory of thermal convection of this type was initiated by
Rayleigh (1916), who assumed that the amplitude of the motion was infinitesimal
such that the equations (Boussinesq equations) could be linearized. If the
perturbations of velocity and temperature fields v = (u, v, w) and T are assumed
in the form:

(v, w,T) = (U(2), V(2), W(2), T(z))exp[i(kxx +hy)+ st], (1)

the problem is reduced to finding eigenfunctions satisfying the given boundary
conditions, where x and y are the coordinate axes in the horizontal plane and z is
the axis in the upward direction. Neutrally stable solution (s = 0) gives a relation

between Ra and k= ,/ kf + kf , whose minimum value gives Ra,. The theoretical

value of the critical Rayleigh number Ra, is 1707.7 for rigid-rigid boundaries,
1100.6 for rigid-free boundaries, and 27n%/4 (= 657.51) for free-free boundaries
(Chandrasekhar, 1961, for review), which agree with experiments quite well. As
far as the onset of convection and the wave number of the marginally stable mode
are concerned, linearized theory is applied successfully. However, it is the
absolute value k, and not each of its component 4, and k,, that determine the value
of Ra,, so that any combination of k, and k, with the same wave number & is al-
lowed. For instance, in terms of the solutions:

(Wi, wy,wy) = W(z){cos(kxx + kyy),cos(kxx - kyy),cos(wlkf + kyzy)}, (2)

the combinations w; = w, give bimodal convection with square cells, which
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include two-dimensional rolls as a special case, while w| + wy + w; with £, = (/3/

2)k and k, = k/2 gives regular hexagonal cells. Superposition of these modes with
suitable magnitudes leads to variety of convective patterns, as was confirmed
experimentally by applying suitable initial disturbances. We shall show some
examples of convective cells in Figs. 1-3. Figures la and 1b show almost two-
dimensional and concentric rolls, respectively, in a circular container, which were
obtained with controlled initial conditions (see also Busse and Whitehead, 1971,
1974). Contrary to this, we have rather irregular cells owing to isotropy in the
horizontal directions under uncontrolled initial conditions. Figures 2a-2d are a
sequence of photographs showing the formation of these cells at an Rag-number
slightly larger than Ra,. Small hexagonal cells of nearly the same size (Fig. 2b)
merge with neighboring cells, which leads to a mixture of long snaky cells of
arbitrary orientations and the remaining isolated smaller cells (Figs. 2d and 2e¢).
Near a lateral boundary, the rolls tend to be parallel to the wall, which is the only
source of finite disturbance to an otherwise homogeneous temperature field.
Figures 3a—3c are also pictures taken under uncontrolled initial condition in a
circular vessel at Ra = Ra,. Initially, concentric-roll-like cells are formed, which
develop into a long spiral cell through merging. Concentric cells in a circular
vessel or rolls along any shape of the boundary wall, in uncontrolled case, have
been shown by Koschmieder (1974), where the convective motion is initiated at
the side walls at subcritical Ra-number and developed into the interior region.
Nonlinear theory or non-Boussinesq approximation is necessary to give the
selection rule for convective patterns slightly above Ra,. in afluid layer of (nearly)
infinitc extent. For example, if the basic temperature ficld has vertically nonlinear
gradient, or if the kinematic viscosity v depends nonlinearly on temperature 7,
subcritical stable hexagonal cells appear (Ra=R ), [ollowed by two-dimensional
rolls (Ra = R;), as shown schematically in Fig. 4. In certain Ra-numbers (R, < Ra

Fig. 1. (a) Two-dimensional and (b) axisymmetric rolls, obtained in a thin horizontal fluid layer in
a circular container with controlled initial conditions.
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Fig.2. Sequence of photographsat(a) /=~ | min, (b) r~2 min, (c) = 5 minand (d) 7~ 15 min, showing
the formation of convection cells in a horizontal fluid layer at Ra-number slightly larger than
Ra, (uncontrolled). (e) Mixture of long winding rolls and small isolated cells, which arc
formed through merging with neighboring cells.

Fig. 3. An example of pattern change from concentric to spiral cells through merging, which was
observed in a circular container at Ra ~ Ra,_ with uncontrolled initial condition.
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Fig. 4. Schematic diagram showing the selection of convective patterns in an infinitely large
horizontal fluid layer in nonlinear theory. The solid and broken lines correspond to stable and
unstable states, respectively.

<R,), both types of cells coexist. For detail, see Segel and Stuart (1962) and Palm
(1975).

2.2 Prandtl number dependence
Figure 5 shows schematically the dependence of the Prandtl number and the
Rayleigh number on the observed cell patterns in a horizontal fluid layer with
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Fig. 5. Schematic diagram showing the dependence of Rayleigh number and Prandtl number on the
convective patterns in an infinitely large horizontal fluid layer.
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large aspect ratio I' (=horizontal length of the container/depth of the fluid layer).
In low Pr number fluid such as air (Pr ~ 1), a sequence of transitions: heat con-
duction state without macroscopic motion (HC) — steady two-dimensional rolls
(S2D) — unsteady three-dimensional forms (U3D) — turbulent convection (TC),
occurs with the increase of Ra. On the other hand, in a liquid like water (Pr ~ 7),
steady three-dimensional convections (S3D) appear between S2D and U3D,
which complicates the convective pattern significantly. For details, see
Krishnamurti (1970, 1973), Busse and Whitehead (1971, 1974) and Busse (1981).

2.3 Thermal convection in finite aspect ratio

If the fluid layer is confined in a container of finite aspect ratio, the resulting
convection will be greatly influenced by the geometry of the boundary wall. There
have been many experiments to check the effect of aspect ratio, especially by
measuring Ra, and wavelength, from which the reasonable approximation to an
infinite layer has been argued (see Koschmieder, 1974, for review). For convec-
tions in a vessel of very small aspect ratio, the degrees of freedom are neccessarily
small owing to the presence of the side walls. Indeed the thermal convection
observed inarectangular box of small aspect ratios, in which the lower wall is kept
at higher temperature than the upper wall, is the two-dimensional rolls with their
axes parallel to the shorter side of the container (Davis, 1967; Stork and Miiller,
1972). Extensive studies have been made for these two decades on the evolution
of the time dependence of convection in this geometry, which have revealed
several routes to chaotic states: (a) route to chaos via period doubling bifurcation
(subharmonic bifurcation), which is theoretically studied by Feigenbaum (1979)
and is experimentally confirmed by Libchaber and Maurer (1980), Gollub and
Benson (1980), Giglio et al. (1981), among others, (b) route to chaos via
intermittency (Pomeau and Manneville, 1980; Dubois ef al., 1983), (c) route to
chaos via quasiperiodic oscillation, which is sometimes associated with phase-
locking, or the appearance of the three incommensurate frequencies (Ruelle and
Takens, 1971; Newhouse ef al., 1978), which was evidenced by Gollub and
Benson (1980), and (d) the sudden transition to chaos at critical Rayleigh number
(Lorenz, 1963), which has not been observed experimentally in thermal convection
in a box-like fluid region, as will be discussed in the next section.

2.4 Surface-tension-driven thermal convection

In the presence of a free surface, different type of convective motion can be
caused by the variation of surface tension with temperature (Block, 1956;
Pearson, 1958). The magnitude of this thermo-capillary flow is characterized by
the Marangoni number : Ma = (0y/0T)ATd/xu, where v is the surface tension co-
efficient. The convective pattern is characterized by a regular array of hexagonal
cells,asis shownin Fig. 6. The vertical velocity at the centre of each cell is upward
or downward, depending on whether Jy/0T is negative (as in most liquids) or
positive (as in most gases), as was shown by Tippelskirch (1956). It was this type
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Fig. 6. Surface-tension-driven thermal convection, showing almost regular array of hexagonal
cells.

of convective pattern that Bénard (1900) originally reported in his historical
paper.

2.5 Bioconvective patterns

Rayleigh-Bénard convection occurs as a consequence of inversion of density
distribution owing to negative temperature gradient. Essentially the same situa-
tion is achieved by the aggregates of micro-organisms, such as ciliated protozoan
Tetrahymena pyriformis. This creature has a density slightly heavier than that of
the surrounding fluid and a negative gyrotaxis. If they assemble in a thin layer near
the surface, density inversion is created, and convective patterns ol regularly
spaced [ingers, patches and hexagonal-cell-like sheets are formed (Winet and
Jahn, 1972; Plessetand Whipple, 1974; Childress et al., 1975). Similarly tall plumes
or a series of “bulbous expansions™ of micro-organisms spaced regularly in a
suspension of a particular algal species (Chlamydomonas nivalis) were found by
Kessler (1985) and are analysed by Pedley et al. (1988). Evolution ofbioconvective
pattern of different species (feterosigma akashiwo)is also analysed by Harashima
etal. (1988).

2.6 Geophysical and astrophysical convective patterns

The resemblance of cell patterns in Rayleigh’s theory to certain forms of
cloud, now obtained by infrared light photograph from satellites, was early
noticed by meteorologists (Kimura, 1976; Tritton, 1977, for review). There are,
however, many factors to be considered. One can fairly frequently observe clouds
in long parallel evenly spaced lines. This might be two-dimensional convection
rolls, as mentioned before, or shear instability owing to large gradient of winds
in stably stratified air. These two processes can be distinguished by the orientation
of roll axes with respect to the wind direction; convection cells are aligned along
the wind, while billows across it. Concerning the convection cells, the horizontal
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extent is as large as a few 100 km, while its vertical height is at most 10 km, so
that the aspect ratio is much larger than that observed in laboratory experiments.
This might be attributed to stratification, the release of latent heat, variation of
material constants with temperature and pressure, and so on. Cellular convective
patterns are also reported in the ocean (Stewart, 1969). The granular structure on
the Sun’s photosphere is considered to be very large convection cells with typical
size 1000 km and typical life time 10 minutes. Doppler shift measurements
revealed that the bright domains are ascending hotter regions, while the darker
boundaries are descending colder regions. Thus the pattern is similar to that of the
Rayleigh-Bénard convection, but the boundary conditions might be quite different
reflecting the interior structure of the Sun. Furthermore, the flow within the cell
is highly turbulent with extremely large Rayleigh number, which makes it
difficult to compare quantitatively with laboratory experiment.

3. Cellular Structure in Thermal Convection in a Vertical Tours

We shall confine our attention to convections in a torus, in which the plane
containing the tube centreline is placed vertically in a vertically uniform negative
temperature gradient. The fluid motion in this region is intuitively considered to
be the simplest, because it has only two characteristic lengths «a (tube radius) and
R (loop radius), and one-dimensional flow along the loop is expected. Contrary
to this, the fluid motion in a spherical container, which is much simpler in
geometry, will be axisymmetric or three-dimensional, so that it will be hydrody-
namically more complicated. The thermal convection in a torus, however, is
found to have possibilities of a variety of fluid motion at higher Rayleigh numbers
in spite of the simplicity of the geometry (Keller, 1966; Welander, 1967; Mulkus,
1972), including the behaviour described by the Lorenz model (Lorenz, 1963;
Yorke and Yorke, 1981), the latter being a useful pedagogical example of
nonlinear dynamics. Besides academic interests, this system has important
practical applications to heat transfer problems in engineering such as toroidal
thermosyphon or solar water heater, cooling devices in nuclear reactors, and so
on.

Several experiments have been made (Creveling et al., 1975; Gorman et al.,
1984, 1986; Stern and Greif, 1987; Widmann et al., 1989; Suda and Mimura,
1989; Ehrhard and Miiller, 1990), and some of their results resemble the one-
dimensional Lorenz-like behaviour, in which the fluid motion is necessarily
“turbulent”. There seems to be a wide gap between their experimental set up and
the assumptions made in deriving the Lorenz model. In contrast to these ex-
periments, we have observed cellular structures (Sano, 1984, 1986, 1989, 1991a;
Sano and Wakayama, 1989) in thinner tori, in which better approximation to
vertically uniform temperature gradient is met. Our experiments show the
transition from laminar quasi-one-dimensional flow to three-dimensional flow
with cellular structure, in which nonuniformities of temperature and velocity
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owing to the finiteness of thermal conductivity of the fluid play important roles.

3.1 Experimental apparatus

Two kinds of thin toroidal loops with cross sectional diameter 2a =1 cm and
0.5 cm (hereafter referred to as torus I and torus II), each having a total loop length
of 2R = 100 cm and a wall thickness of 1 mm, were used. The aspect ratio € =
a/R, which is an indicator of realizability of one-dimensional flow, is both very
small (=0.0314 and 0.0157, for torus I and torus I, respectively). The loop, which
is made of Pyrex glass, is placed vertically. The upper and lower parts of the torus
are partially covered by jackets made of plexiglass (each jacket surrounds one
quarter of the total loop length), into which cooling and heating water, respectively,
are supplied at a constant rate (Fig. 7). The remaining parts of the loop are exposed
to air at room temperature. This apparatus, in which the temperature on the tube
wall is well defined, is designed to achieve better approximation to a vertically
uniform temperature gradient than previous experiments. The entire apparatus
can be rotated around the centre of the torus in a vertical plane, so that the right-
and-left symmetry of the loop could be carefully checked. The temperatures of the
cooling and heating water were kept constant within an accuracy of £0.1°C, while
the room temperature was regulated within an accuracy of £0.5°C. The working
fluids used in the present work were distilled water and ethyl alcohol (99.5%).
Combined use of different tori and different liquids enables us to cover a wide
range of Rayleigh number region. We visualized the whole flow field and

U Video
camera

Photo
multiplier

X-Y stage

Toroidal
loop Z stage

Fig. 7. A sketch of our experimental apparatus and the definition of the coordinate system.
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temperature distribution, and measured the velocity field directly by means of a
laser Doppler velocimeter (LDV).

3.2 Experimental results

3.2.1 Critical Rayleigh number for the onset of convection

We show the Reynolds number squared against the Rayleigh number in Fig.
8. Here the Reynolds number is defined by Re = 2aU/v, where U is the maximum
longitudinal velocity in the cross section of the tube. This figure shows that they
can be accurately fitted by different but single straight lines with the same

intercept Ra,, so that Re is proportional to ,/ Ra — Ra, . The experimentally de-

termined critical Rayleigh number Ra, is about 35, and this relation holds for an
Ra-number range up to a few hundreds. This power law near the critical Rayleigh
number has been derived in many critical phenomena described by mean-field
theory as well as in nonlinear stability theory in fluid dynamics, and in particular
in the Lorenz model. Surprisingly, this power law is followed far beyond the
threshold of the convective motion as shown in Fig. 8.

3.2.2 Steady cellular flow

As the Rayleigh number was further increased (greater than about 800 in
water in torus I), a local recirculating flows manifested itself in each quadrant of
the loop like those shown in Fig. 9. The generation of this pattern is as follows:
A heated lighter fluid element, initially moving upwards along the upper wall in

x104 o e o
8 = ZO ° [
v * (a)Water in torusl
Cbwater %
6 - intorusl aa.ge, . N
(1] 4
.. A
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Fig. 8. Relation between Ra and Re?: (a) anti-clockwise flow of water in torus I(O, 0); clockwise
flow of water in torus I(@, ), (b) anti-clockwise flow of water in torus I1(x); clockwise flow
of water in torus II (+), (¢) anti-clockwise flow of ethyl alcohol in torus I(A); clockwise flow
of ethyl alcohol in torus I (A).
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the lower half of the loop (®), departs to the upper side of the wall in the upper
half of the torus (®), while a colder fluid element moves downward along the
opposite side of the tube wall in opposite direction (@ and @), so that these two
currents cross at positions ® = £90° (®, see the photograph of Fig. 9b, where the
blue streakline moves downward, while red one goes upward). Here ® is mea-
sured counter-clockwisely along the loop from the bottom. At ® = 0° or 180° the
flows with the same direction connect smoothly (®), and circulatory flows which
twists at these four positions are formed. The presence of cellular region is
quantitatively confirmed by measuring the velocity field in terms of an LDV, as
well as by analysing the visualization picture of the fluid motion by means of
tracer particles. This cellular motion is sometimes obscured by the presence of
Poiseuille-like main flow, so that the number and positions of the cells are
sensitively influenced by the symmetry of the system, as was shown in our
previous papers (Sano, 1984, 1986, 1989, 1991a; Sano and Wakayama, 1989).

3.2.3 Time dependence of the cellular structure

The velocity component wy; along the loop (torus I) in ethyl alcohol at #/a =
0.2 and ® = —77° was measured by an LDV, where r is the distance in the cross
section of the tube from the centreline (see Fig. 12). The flow became oscillatory
at Ra = 2500 in this test liquid, and sizes and positions of cellular substructure
were observed to fluctuate. We have also checked the spectrum, the two-
dimensional phase portrait, and the Poincaré section of the corresponding data
(Sano, 1991a). The flow was almost stationary at Ra = 2330 (= 67 Ra_). The first
Hopf bifurcation, i.e., transition from a stationary to a periodic flow with
frequency f; (and perhaps its higher harmonics) was easily recognized at a certain
Ra value between 2330 and 2620 (= 75 Ra,). As the Rayleigh number was further
increased, the second Hopfbifurcation with frequency f, appeared. All sharp peaks
in the spectrum could be identified as linear combinations of two basic frequen-
cies of the form mf] + nf,, where m and n are integers, f; = 155 mHz and f; = 90

mHz at Ra = 2910 (= 83 Ra,). The ratio f5/f; = 1.72 is close to /3, suggesting that

the two frequencies are incommensurate. Indeed the orbit in the phase space was
close to a torus in spite of considerable scattering of the data. As far as the
spectrum is concerned, frequency locking seemed to occur at Ra ~ 3000 (= 86
Ra.). This phase-locking state seemed to be unstable, and the locking ratio could
not be reproduced exactly, probably because of the coarseness of our Ra-number
scans and the presence of the noise. At Ra = 3210 (= 92 Ra,_), the velocity signal
looked erratic, and broadband spectra developed, which indicate nonperiodic
motion ofthe fluid. For Ra = 3500, streaklines began to be irregularly twisted, and
the velocity field was highly turbulent at positions where the counter flows met.
Experiments were carried out up to Ra = 10460, using ethyl alcohol. The magni-
tude of the velocity increased in both directions, but large scale structures still
remained. In our experiment, “reversal of flow directions” was not observed in its
literal sense, rather the magnitude of cellular flow or bi-directional flows was
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found to change in time.

All these findings show that the transition from a steady unidirectional flow
to more complex ones occurs through a process which is quite different from that
expected in the Lorenz model. It seems to be rather closely described by a route
to chaos via quasiperiodic state, in which three-dimensional structure changes
both spatially and temporally.

3.3 Theoretical analysis

We have shown experimentally that the simple one-dimensional model of
the Lorenz type should be modified so as to include three-dimensionality of the
flow fields for the purpose of accurately predicting the fluid motion. Some
extensions of the Lorenz model to take into account of the three-dimensionality
have been made by Yorke et al. (1987), which have made allowance for radial
variations of temperature, and introduced axially symmetric higher order spatial
modes in their expansion. Their assumptions, however, seems unrealistic. In this
section, we shall take into account several types of convective flows with spatial
structure which can explain the experimentally observed flow patterns (Sano,
1986, 1987, 1988, 1989, 1991b).

3.3.1 Mathematical formulation of the problem

We take the x and z axes in the plane of the generator of the torus with z axis
in the negative direction of gravity (see Fig. 7). We also introduce the coordinate
system (r, ¢, s), where s is the distance measured counter-clockwisely from the
bottom along the generator, while (, ¢) is the polar coordinate system in the cross
section. The direction of ¢ = 0 is chosen so that it always coincides with the
direction from the generator to outer edge of the torus in the plane of the ring (x-
z plane). We analyse the fluid motion on the basis of the Boussinesq approxima-
tion so that the governing equations for the velocity v, temperature 7 and pressure
p are

Vv=0, (3a)

Fig. 9. (a) Generation of cellular pattern (schematic). Visualization picture of (b) streaklines (blue
for downward, and red for upward motions) showing cross flows, (c) a timeline showing bi-
directional flow, and (d) steady separated region.

Fig. 14. Temperature and velocity distributions in the plane of the ring at (a) Ra = 1000, (b) Ra =
1500, (c) Ra = 1880, and (d) Ra = 2100, with Pr=>5 and ¢ = 0.03, exhibited by ELM8. The
number and positions of the cells as well as the temperature distributions shift (b) periodically
and (c) quasiperiodically, while (d) higher temperature fluid region extends its tongue-like
domain either to the upper left region or to the upper right region non-periodically inside the
loop.
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po(%v+v~ij=—Vp+ﬂA"—Po[1_a(T_]z))]gez’ (3b)

ﬁT+v-VT=KAT, (3¢)
ot

where py is the density of the fluid at temperature 7, and e, is an upward unit
vector. We take the steady heat conduction state under a constant vertical
temperature gradient —p as a fundamental solution. The perturbed fields satisfy
the linear equations, which are expressed in terms of the (r, ¢, s) coordinate
system. Hereafter, we shall only deal with a thin loop (g << 1).

In order to analyse general situations including both symmetric and antisym-
metric modes, which are caused by experimentally uncontrollable small distur-
bances under symmetric boundary conditions, we expand all quantities in terms
of the double Fourier series in ¢ and ® in either of the following four types: '

(i) S-type;

(T,p/Pru)= Z(T,fn(r),P,fn (r)US, (r))cosm(/)cosn@,
(4a)
w=Y Wy, (r)cosmgsinn®, v="> Vs (rkinmpcosn®,

(i) A-type;

(T,p/Pru)= Z(T,fn(r),P”fn (r),U,ﬁ,,(r))cosm(bsinn@,

(4b)
w= W, (rcosmgcosn®, v="> V2 (rkinmgsinn®,
(i) S-type;
(T,p/ Pru)= Z(T,fn(r),P,fn (r), U,fm(r))sinmtﬁcosn@,
(4¢)

w=Y W (rsinmgsinn®, v="3 Vs (r)cosmpcosn®,

(iv) A-type;
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(T,p/ Pru)= Z(T,,‘fn(r),P,fn (r), Uz, (r))sinm¢sinn®,
(4d)
w=Y W (rkinmgcosn®, v="> VA (rlcosmgsinn®,

where 2. denotes summation over m,n =0, 1, 2, ..., and (u, v, w) are the velocity
components in the (7, ¢, s) directions, respectively. By substituting either one of
the expressions (4a)—(4d) for our linear equations, we obtain an infinite set of
ordinary differential equations for T, W,.., Upn, Vs and P, in each corre-
sponding type. Convergence of these series solution is assumed.

3.3.2 Onset of convection

We first consider the simplest A-type flow which is given by the series:
WAgo-T01-WAp2-T"3-... By substituting this series for linear equations, and by
assuming the solution of the form:

m=

Wi = ando(kogr) Toh =budo(kogr) (m=0,2,4,..., n=1,3,5,...), (5)

(where J; is the Bessel function of the first kind of order , and k;, is the g-th zero
point of J;), we obtain after some calculation

(p2N+1 _ 1)2k§qao
pY(p-1)Ra

(6)

1
Ay = (PN +p—Nja0/ byny1 =

where p + (1/p) =2 — a,. If we truncate the series at a certain large number of terms
by putting a,\ = 0, we have the conditions for o, which give the eigenvalues Ra*
of the Rayleigh numbers. The minimum value of Ra*,;, (= Ray) for N > = is

Ray = kg, =33.44523..., (7)

where ky; = 2.404825... is the first zero of J,. This figure agrees fairly well with
the experimentally determined critical Rayleigh number Ra.. The first pair of
terms (W%, T?y,) corresponds to a Poiseuille-like flow along the loop, which we
shall term Ay,-mode (Fig. 10a);

(Ago): T = AJy(koyr)sin®, w = AkgJo(koyr), u=v=0, (8)

where 4 is an arbitrary constant.
3.3.3 Some other typical steady convective patterns
We shall show some typical convective flows, which are obtained similarly
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Fig. 10. Velocity and temperature fields of some basic modes. The right half of each picture shows
schematic streamlines y and velocity components (1, w) in the plane of the ring, while the left
half shows isotherms (solid and broken lines correspond to positive and negative values,
respectively).

to the previous subsection:

(So2): T =[Jolkr)+(Jo /1)y (k) = 215 Jeos,

w =207 [Jy (kr) = (Jo / Io ) (kr) sin2 0,

)
u= —48k[J] (kr)=(Jo / Iy )Ly (kr)]cosZ o,
p/Pr=2&"k"Jycos20,

where J, = J,(k), I, = I,(k), and k = 4.6108998... is the first zero of Iy(k)J;(k) —
Jo(k)I (k) = 0, as shown in Fig. 10b;

(10)

w= Aklzl']l(kllr)cos¢’ Uu=v= 0,

where &k, =3.831706... is the first zero of J;. Note that Egs. (10) describe the anti-
parallel Poiseuille-type flow along the loop (Fig. 10c);

(812): T =T(r)cosgcos®, w=Wy(r)cosgsin2®,

u=Ug(r)cosgcos2®, v = Vy(r)singcos2®, (11)
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p/ Pr= Py(r)cosgcos2®,

where

Ty = —AJ(kyyr), Wy = =2k} AT (K 7),

Uy = e {241, Jo (ki )(1= 72) + 403 (kar) / 7= [ o (ki) = Jo (k-
(12)
V, = sA[—6k11J0(k”)(l —r2)+ 4 (kur)/ r],

Py = ed[~16k 1Ty (ky, )+ 45, (kyor))

as shown in Fig. 10d. This mode describes a symmetric four-cell-type three-
dimensional convection. There are many other modes of interest, which are
shown in our previous papers (Sano, 1987, 1988, 1991b)

3.3.4 Superposition of basic patterns

We have seen that 45p-mode describes the steady flow along the loop at
Rayleigh number region slightly above Ra,, and that S;,-mode represents flow
with four cells. In this subsection, we shall briefly consider superpositions of
symmetric and antisymmetric flows in order to describe the experimentally
observed flow patterns.

(@) (S12) +&*(Aoo):

Superposition of small amount of Sy, on 4y, leads to a circulatory flow along
the loop, in which the position of the highest velocity in the cross section deviates
from a circle (Fig. 11a). With the increase of S|, mode, four cells become dis-
cernible. If anti-clockwise (A4q)-type flow is accompanied, the cells in the first
and third quadrant shift toward the inner wall, while those in the second and fourth

Fig. 11. Superposition of basic modes; (a) Sj;:4¢9 = 0.2:1, (b) S)5:4gp = 0.5:1, (¢) S12:4g9:410=
0.5:1:0.5. Dotted lines illustrate particle paths.
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quadrant shift toward the outer wall of the torus (Fig. 11b). This result is in
agreement with our observation.

(b) (S12) +€*(doo) + £**(410)

Superposition of these three types gives steady flow with two cells (Fig. 11c),
which is often observed experimentally at higher Rayleigh number regions when
a slight asymmetry was introduced.

3.3.5 Time dependence of the superposed patterns

We shall now derive model equations to describe time dependence of the
flow and temperature fields. We employ four modes mentioned above to represent
experimentally observed flow field, whose amplitudes are assumed to be func-
tions of time. Thus we have

w = X(£)Wyg + A(t)Wgpsin20 + B(t)Wacosd + C(t)WScos¢sin20,
(13)
T = Y(t)T5isin® + Z(¢) T cos® + D(t)T;{cos¢sin® + E(¢) T;3cospcos®,
and similarly for u, v and p. By substituting these expressions for Egs. (3a)—(3c¢),

and equating like terms, we have, after some calculation (Sano, 1991b), a set of
first order nonlinear differential equations for X, 4, B, ..., and E:

X = -5.7832PrX + 0.086458 PrY, (14a)
A=—(15.265+20.291Pr)4 +0.019666 PrZ, (14b)
B=-14.682PrB+0.034055PrD, (14¢)
C=-14.682PrC+0.017028 PrE, (14d)

Y =5.7832(RaX - Y) + £(7.9025XZ —15.0554Y + 0.98507 BE
+12.641CD)  (l4e)

Z=12.714(Rad — Z) + &(~5.7051C - 3.7635XY +11.8414Z
~0.67980BD-8.7237CE)  (14f)

D =14.682(RaB ~ D)+ &(5.4535XE — 33.8834D +20.062 BZ
-25.831CY)  (14g)
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E =14.682(RaC - E) + £(10.9294 — 5.4535.XD + 33.883 AE
~13.845BY +61.536CZ).  (14h)

As is easily shown, the above equations are reduced to the Lorenz model
when only the terms X, Y and Z are retained:

X=-PrX+PrY, Y=(Ra/Ra,)X~Y+XZ, Z=-bZ-XY, (15a,b,c)

where b is a geometrical parameter and the sign of Z has been reversed. In this
context, the model equations (14a)—(14h) can be regarded as an extended Lorenz
model with eight variables (ELM8).

Numerical simulation was made for changing Ra with fixed € = 0.03 and Pr
=5. The global characters of the orbits in phase space with the same €, Pr and Ra
but with different initial conditions are similar to each other. Figure 12 are typical

velocity signals w,, obtained by ELM8, where w,, is the velocity w at #/a = 0.2,

RQ®™® = WM Ra™Mer = WM At = 0001
A AN ey
(@) 2620 TRV, 1500 Finn%iih}ukhg} R R }V hk“x
o] Time(sec) 80 0 steps 4000
(b) 2910 MYV Y’ Y
o] Time(sec) 80
Yok | i i
() 3210 PHEMERAY 2os0 ' U IVER
[T L ;
0 Time(sec) 200 !
I | I ]
| 1 H
(d)
4150 I (I LT (L
’ 111 |
o Time(sec) 200

Fig. 12. Rayleigh number dependence on the velocity component along the loop w), (experimental,
withe=0.0314, Pr=15) and w,, (theoretical, with € =0.03, Pr=>5); (a) monoperiodic (Ra®*P
= 2620, Ra™e°" = 1500), (b) quasiperiodic (Ra®*P = 2910, Ra™®°" = 1880), (c) chaotic(Ra®*P
= 3210, Ra™®°" = 2050), and (d) highly chaotic(Ra®*P = 4150, Ra™°" = 2100).
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¢ = 0° and ® = 45°. Experimental data w,, are also shown for comparison. The
results of the numerical calculation can be summarized as follows:

(a) Thermal convection starts at éac =66.890. Note that we have employed

a truncated solution Eq. (8), which results in the critical Rayleigh number twice
as large as Ray shown in Eq. (7).

(b) The relation y{;M oc \J! Ra— Iéac is well fitted up to Ra ~ 300. The ex-

ponent changes gradually from 1/2 to 1, so that w,, « Ra for Ra = 1000. Velocity
field is steady, but three-dimensionality increases with Ra.

(c) First Hopf bifurcation occurs at Ra = 1240 (= 37.1 Ra,), and periodic
flow with frequency f; appears (Fig. 12a).

(d) Second Hopf bifurcation occurs at Ra = 1810 (= 54.1 Ra,), with fre-
quency f, (Fig. 12b). All sharp peaks can be interpreted by the combination of two
frequencies f; and f, of the form mf; + nf,, where m and n are integers.

(e) At some particular Ra values, frequency locking is observed. For ex-
ample, we have found f /f,/f; = 1/7/15 at Ra= 1901, f; /f>/f, = 1/6/13 at Ra= 1929,
and f /f>/fy =1/5/11 at Ra = 1995, etc., where f; is the locking frequency.

(f) AtRa=1996 (=59.7 Ra,) the spectrum becomes broad. The Lyapunov
exponent becomes positive, and the orbit looks chaotic (Figs. 12¢ and 12d).

(g) The present model shows numerical divergence at Ra = 2308 (= 69.0
Rao).

Behaviours for Pr=7, 10 and 15 are similarly checked, which shows similar
sequence of transitions, namely the route to chaos through quasiperiodic states
(see the bar graphs in Fig. 13).

Figures 14a—14d show the temperature and velocity fields at some particular
Ra-values. The torus is cut at ® = 180° (top of the loop), and extended for
compactness. Higher temperature corresponds to red region, while lower one

(a) Pr=5 l_: S 1 " P .QPI c .x\xxxxxxxxxxxxxxxxx

(b) Pr=7 |_'. ) ] ' P L .QP C\“.gxxxgxxxxx

(¢) Pr=10 l_,:_ S 1 P 1 2 CI .xI):c)x

s - 0

(d) Pr=15 L B 1 1 IX XX
(¢} 1000 2000 Ra 3000

Fig. 13. Bar graphs of various instabilities in ELM8 with ¢ = 0.03 and (a) Pr=>5, (b) Pr=1, (c) Pr
=10 and (d) Pr = 15. Symbols used are (S) steady; (P) periodic; (QP) quasiperiodic; (C)
chaotic; and (D) numerical divergence.
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corresponds to white and blue in the left half of each figure. Patterns change from
above to below (except Fig. 14a which is in steady state). Note that cellular
regions appear or disappear, or shift their positions periodically in Fig. 14b,
quasiperiodically in Fig. 14c and non-periodically in Fig. 14d.

3.4 Comparison of our theory with experiment

Our theory on the onset of thermal convection, in terms of an infinite Fourier
series, quantitatively agrees with experimental result of Ra, (Subsection 3.3.2).
Steady cellular flows are also described by superposition of several fundamental
modes analysed in Subsections 3.3.2-3.3.4. Our model ELM8 shows qualitative
agreement with experimentally observed sequence of dynamical regimes, i.e.
steady, monoperiodic, quasiperiodic and chaotic states. ELM8 predicts frequent
appearance of phase-locking states among quasiperiodic region, for which only
a few evidence had been obtained in our experiment.

Disagreement of theoretical Ra value with experiment concerning the onset
of oscillatory regime in Pr = 15 and € = 0.03 for instance, which is about one half
of experimentally found Ra, is probably due to the crudeness of the present model.
Similar detailed comparison shows that our theoretical prediction agrees with
experiment quantitatively within a factor of 2 (Sano, 1991b). Precise determina-
tion of the range of various instabilities, thereby removing the computational
divergence, would require a much more appropriate choice of the coefficients of
X, Y, ..., Ein Eqgs. (14a)—(14h). Furthermore, increasingly large number of modes
would be required to describe an increasingly large degrees of freedom in fluid
motion at large Rayleigh number regions, which is beyond the scope of the present
approach.

4. Conclusion

We have seen many convective patterns, which are generated in different
initial or boundary conditions. Patterns exhibited at Rayleigh numbers near Ra,
under controlled initial conditions, or those generated by surface tension, are
regular and has been theoretically tractable. However, convective patterns ob-
tained under uncontrolled initial conditions could be much complicated. At
higher Rayleigh numbers, convective patterns are spatially and temporally much
more involved, even in the simplest geometry of the vertically placed toroidal
loop, as has been shown here. Our theory, in which only a small number of steady
basic modes are used to describe the convection at higher Ra-number region and
is semi-quantitatively confirmed by the experiment, will serve as a first step to
study transitions and formation of patterns in thermal convection in more general
situations.
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