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Self-Induced Vibration of an Evaporating Drop
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Abstract. A review is given on the experiment and the theory about a self-excited
vibration of a rapidly evaporating drop of liquefied-gas, which is placed on a
horizontal floor with room temperature. The drop showed modes with polygonal
shapes in the plane view and made transitions to other modes as it reduced size
through evaporation. The process of mode transition did not depend on the
temperature, of the surrounding air. Some theoretical investigations of this phe-
nomenon are explained. These researches provide a new aspect of pattern dynamics
of a highly inequilibrium system.

1. Introduction

Let a drop of liquid nitrogen or oxigen (whose boiling temperatures are —195
and -173°C, respectively) on a horizontal plate with room temperature, then it
deforms to a thin circular disk owing to the gravity. The drop is in an overheated
state, and the vapor coming from the lower surface of the drop has an enough
pressure to levitate the drop from the plate. According to our observation (Adachi
and Takaki, 1984) such a drop showed a characteristic vibration, where the
thickness of the drop remained constant and its plane contour oscillated around a
circular shape with relatively large amplitude. It could move without friction from
the plate by the presence of a vapor sheet under it. Number 7 of waves (or vertices)
along the contour changed according to the drop size. This vibration continued until
it disappeared through evaporation.

In spite of the fact that it is commonly observed in laboratories, mechanism of



364 Chapter 5

vibration is not understood yet. A similar experiment was made before (Holter et
al., 1952), but there seems to be no other reports on research of this phenomenon.
A general review of this phenomenon is given by one of the present authors (Takaki,
1990).

Analyses of small amplitude vibrations of a spherical drop and a circular
column are made by Rayleigh (1879, 1902) and the following formula for frequencies
wy and . are obtained:

w? = @;1—)—'5@—:—2)—0, for a spherical drop, (1)

3
op

o? (n=-Dn(n+1)o

=-——=———, foracircular column, (2)
P

where n is the degree of spherical harmonic function for the sphere case and the
number of waves for the column case, o is the surface tension coefficient, ry is the
mean radius, and p is the liquid density.

For the case of a flattened drop as in our experiment, the present authors
(Takaki and Adachi, 1985) developed a linear theory to predict its frequency based
on the invicsid hydrodynamics and the shallow water approximation. Result of the
theory agrees well with our experiment (Adachi and Takaki, 1984). However, the
linear analysis is not concerned with such problems as determination of amplitude,
mechanism of excitation of vibration or that of mode transition.

With a purpose to investigate mechanism of vibration, the present authors
recently made an experiment to change the surrounding temperature within -90°C
and 200°C and to observe vibrational modes.

In this paper, a brief summary of our past observations and analyses is given,
and based on these researches, an aspect of pattern formation phenomena in highly
inequilibrium state is suggested.

2. Experiment

2.1 Mode selection and vibrational frequency

A drop of liquid-nitrogen, liquid-oxygen or liquid-argon with volume 0.1-0.2
cm?was put carefully at the center of a slightly concave lens with radius of curvature
10 cm, which was placed horizontally and kept at room temperature. Motion of the
drop was recorded by the use of 16 mm cine camera or video camera from above.
The lens was used in order to keep the drop within the frame of the camera.
Immediately after it was put on the lens, the drop began vibrating, where the
thickness of the drop was nearly constant (1.5 mm) but the contour in the plane view
showed a standing wave, as is shown in Fig. 1. Period of vibration was O(30 ms)
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(8)  Ng, re=2.7mm, Ti2=1%ms

(b) O, ro=30mm, T/2=25ms

{o) Nz, re=21mm , TI2=20ms

{d) g, ro=20mm, T/2=33ms

Fig. 1. Plane views of drops in polygonal vibration, taken by a high-speed camera. (a), (c), (d) with 400
frames/s, (b) with 4000 frames/s, (e) a side view of 4-mode. (from Adachi and Takaki (1984)).
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in any case. This type of motion is called here a polygonal vibration. The amplitude
of vibration remained constant and had nearly the same value at any run of
experiment.

Mode of vibration is indicated by the number n of waves along the periphery
and is called n-mode. A mode was selected almost uniquely depending on the drop
size, i.e., for a smaller drop the mode number n was smaller. As the drop size
decreased through evaporation, the drop motion changed to arandom one and after
short time recovered another regular mode with smaller n. After 2-mode the drop
became nearly spherical and disappeared.

Strange to say, there was a clear distinction in the procedure of mode transition
among materials. Drops of liquid-oxygen and liquid-argon showed a successive
decrease of n, while a drop of liquid-nitrogen always skipped 4-mode, i.e., it made
a transition from 5-mode to 3-mode, then to 2-mode. If an initial drop size was too
large, the drop showed either random motion or splitting to small drops.

Quantitative measurement of mode transition was made by the use of a image
processing technique (Takaki ez al., 1986b, 1989), and it was found that a certain
kind of nonlinear interaction among several modes was taking place during the
mode transition. However, the mechanism of mode transition is not understood
well, nor is it clear why the liquid-nitrogen did not show 4-mode.

Periods of vibration of several modes were measured (Adachi and Takaki,
1984) as shown in Fig. 2. The data show clear dependence on ry*? (r, is the mean
drop radius in the plane view). Although the mechanism of fluid motion is
complicated, the dependence of the period on the drop radius is obtained easily by
a dimensional analysis. Suppose the dynamics is determined by the density p, the
radius 7, the surface tension coefficient o and the liquid density p, then the period
T should be expressed as
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Fig. 2. Variations of mean radius r, and period of vibration T during one run of experiment for liquid-
oxygen. (from Adachi and Takaki (1984)).
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T = const. (r03p / o)l/ 2 (3

where the constant may depend on the mode number n.
3. Theoretical Approach

Theoretical study is immediately faced with difficulty coming from the
complicated dynamics. However, certain simplified analysis may be possible as
explained below.

3.1 Static state

First, a static state is treated and the vibration is looked upon as a perturbation
on this static state. In the static state the drop is a circular disk, whose thickness is
estimated from a balance of the gravity and the surface tension at the peripheral
region.

Let us denote the thickness by Ag, and assume that the radius of curvature at
the periphery in the vertical cross section is hy/2. Then the balance of the gravity and
the surface tension leads to the following relation:

1 o
- d stati S = — 4
> pghq(averaged static pressure) Ve (4)

By substituting material values of liquefied gases, we have hy = 1.8 mm, which
agrees with measurement (1.5 mm).

A more precise argument can be made by considering also the radius of
curvature Ry in the plane view (Takaki and Adachi, 1985), and the result is

, where G =

7

@, H=ﬂ (5)
o R,

Len? -2+ -
2 H +

and B is given in Eq. (7). The parameter G indicates the importance of the gravity
relative to the surface tension, and H is the aspect ratio. If the drop is thin, i.e., H <<
1, then we have

G>>1, GH? =4, GH=0(H")>>1 (6)

3.2 Linear theory of vibration
Normal mode of small amplitude vibration is treated to obtain vibration
frequency. Motion of liquid is governed by the Navier-Stokes equation, the
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continuity equation and the boundary conditions at the liquid surface. Assumptions
made here are as follows:

(1) The aspect ratio hy/R,, where R is the mean radius in the plane view, is
sufficiently small. The fluid motion is looked upon as a surface wave on the liquid
layer and the shallow water theory is applied. Depth of the liquid is denoted by A(r,
6, ?).

(2) The contour of drop shape in the plane view is denoted by R*(9, f).
Boundary conditions for shallow water motion are applied at a modified boundary
r = R(8, £), which is defined so that the semi-circle in the vertical cross section has
the same area as the rectangular region ending at the modified boundary (see Fig.
3), i.e.,

R(6,1)=R(6,1)+ Bh(R, 6,1), where B =—~=2=0.107. (7)

moditied

z ba.ndary\l

(- h(r.6,t) " a
0

R(8,t)
RN6.t) ———|

Fig. 3. Assumed geometry and definitions of variables. (from Takaki and Adachi (1985)).

(3) Thelower boundary of the liquid layer remains horizontal and suffers no
frictional force from the floor.

(4) The liquid flow is incompressible and inviscid.

(5) Effect of evaporation is neglected, hence all material parameters and the
drop volume is constant during vibration.

Assumptions (1), (2) and (3) do not contradict our observations, while (4) and
(5) need some examination. Typical Reynolds number for vibrating drop is O(100),
hence the dynamics can be analysed in terms of inviscid flow. Both effects of
damping due to viscosity and driving force due to evaporation belong to long time-
scale phenomena, and can be neglected in the analysis of vibration. The volume
change during one period of vibration is also negligible.

Basic equations in the shallow water theory are the continuity equation and the
momentum equation, which are written in the cylindrical coordinates as follows:

f_}l_,_l 0(rhu,) . 1 a(hu,,) -0, (8)
at r or r 96
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Z (phu) + —(u,phus) + —— (upphu) = —gradP, 9
P (phu) p (u,phu) 0 (ugphu) = —gra (9)

where u = (u,, ug) is the velocity vector in the horizontal direction, P = pgh?/2—cAh
is the pressure integrated along the vertical direction and p is the liquid density.
The pressure condition at the modified boundary is

11
P=ho|—+—|, at r=R(6,1) 10
0(R1+R2) at r=R(6,) (10)

where R, = h(R(6, £), 0, £)/2 is the radius of semi-circle at the periphery in the vertical
cross section, and R, is the radius of curvature of the plane contour expressed by r
= R(0, ?). The kinematical condition is written as

1R R
4 o 90

- at r=R(0,t) (11)

Procedure of normal mode analysis of vibration is given briefly below. Let r

and ¢ be normalized by Ry and Ry = 4/ pRg |/ o , respectively, and the same notations
are used for normalized quantities. Perturbations of variables (denoted with tilde)
are introduced as

h= R(,H{l +h(r,0,1)}, R=Ro{1+R(6,0)}

where é& is the velocity potential. For vibration of n-mode, the variables are written

(&3, h, k) + (¢(r), ih(r), ii?)exp(inﬂ +iQt), (13)

where quantities with hat are real.
Then, from the governing equations (8)—(11) we obtain, after some manipu-
lations,
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2
(A,,+w )¢ 0, where A, 14 —4—-”—2, w?=Q%/GH, (14)
rdr dr r

(n? - 1) = w? {(1 +BH)’GH - (1+ pH) - (n* - 1),311}&, at r=1, (15)

where ¢’ is the derivative of ¢. In deriving these results we have neglected terms of
O(H?).

Solution of Eq. (14) free from singularity at the origin is the Bessel function
of the first kind, i.e.,

a

¢ = AJ,(wr), (16)

where A is an arbitrary constant. Then, Eq. (15) leads to an eigenvalue equation for
Q, as follows:

7.'(w) GHw{(1+2/3H) (GH)™ +0(H2)}
J,(w) N?-1

where the prime denotes derivative. After neglecting terms of O(H?) again, we have

Q2 = n(n2 _1)/ {(1 +2BH) + ;’G‘ ; }, (17)

Let us compare this result with experimental data (Adachi and Takaki, 1984).
Experimental values of H were within 0.38 < H < 0.52 for liquid oxigen in 6-mode

vibration. Values of 1/o/ p were chosen as 2.9, 3.2, 2.9 (cm*?/s) for liquid-ni-

trogen, -oxigen and -argon, respectively, in order to get best fit to experimental data.
These values are smaller than those at the boiling points, 3.4, 3.5, 3.1, respectively,
by several percent.

Figure 4 shows comparison of theory with experiment along with Rayleigh’s
formulae (1) and (2). The narrow width in theoretical values comes from those of
H used for their evaluations. The agreement of the present theory with experiment
is better than Rayleigh’s results, especially for larger n. On the other hand, the
formula (1) agrees best to data of 2-mode. This result is convincing, because the
drop in 2-mode was small enough to have a spherical form rather than a thin liquid
layer assumed in the theory.

The above analysis gives a good prediction of the vibrational frequency for
relatively higher mode number. However, it is still not clear how the drop can
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Fig. 4. Comparison of theoretical values of frequency with experiment. Rayleigh’s formulae are also
shown. Width in the theoretical result comes from that in experimental values of H. (from Takaki
and Adachi (1985)).

maintain vibration, how a particular mode is selected or why the mode selection
depends on material.

3.3 Model simulation of mode transition

In order to get a hint on these questions, a computer simulation is made by the
present authors based on a simple model showing self-excited oscillation (1986a,
1989). The model includes a term with parametric modulation of the frequency, the
decrease of drop size, a nonlinear interaction of modes and a dissipative effect. Let
u(0, t) denote the displacement of drop contour and be expressed by a Fourier series,

u = Zu,(t)exp(in0) (18)

Let us normalize length and time by the initial drop radius r and the time scale T
(see Subsection 3.2). The assumed equation for model simulation is

i, + yi, + NL, (1) + 0} {1 + acos(2wt)}u,, =0, (n=2,...,6) (19)
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where wg and NL,, (1) are given as follows:
wy =2.5(n-1)(1+p)"'%, B=0.05,

NL, (1) = n— th Fourier component of ( uit).

The parameters € and o are constants, the dot over u denotes the time derivative and
o is fixed at 10. Interpretation of each term in Eq. (27) will be found in the paper
by Takaki et al. (1989). For a given initial condition variations of several modes are
calculated by solving Eq. (19), and the summary of results is given here.

In relatively narrow region of (, €) successive appearances of several modes
are observed, where the mode number decreases. For o much larger than about 0.3
or £ > 17, the drop always shows burst. For opposite conditions, it tends to stop
vibrating. These results agree with observation at least qualitatively and several
suggestions are obtained. However, true understanding would not be possible, until
hydrodynamical analysis considering effect of evaporation is properly taken into
account.

4. Dependence on the Temperature of the Surrounding Air

Since the thermal inequilibrium is the main driving force of vibration, an
experiment with various degree of inequilibrium may lead to deeper understanding.
Motivated by this idea a new experiment was made. The temperature of the
horizontal floor and the surrounding air were changed, by setting up the apparatus
within a heater or arefrigerator, within the range from—87°Cto 200°C, and behavior
of a drop of liquid-nitrogen was observed by a video-camera. Size of the drop and
vibrational frequency were measured by image processing from video images.
Results of the measurement are summarized below.

Dependence of the frequency on the drop size is shown in Fig. 5, for several
temperatures. It is remarkable that the data for the same mode lie nearly on the same
curve, irrespective of the temperature difference of about 300 deg. The frequency
did not depend on the ambient temperature but solely on the drop size. An only
effect of different temperature was the long time-scale behavior, such as the life-
time of a drop or behavior of mode transition.

Since the dynamics of vibration is governed mainly by the drop size (the inertia
effect) and the surface tension (the restoring force), this result means that the surface
tension of the drop was nearly constant independent on the ambient temperature T,
i.e., the surface was kept at a common temperature irrespective of the ambient
condition.

Figure 6 is a diagram showing processes of mode transition at various
temperatures for drops of liquid-nitrogen. From this figure we can see that the
process is the same in a wide temperature range ~80°C < T, < 150°C. In a region
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Fig. 6. Diagram of mode transition patterns.

with 150°C < T and 1.5 mm < ry < 3 mm each mode had a regular pattern but was
not selected uniquely so that the mode transition seemed to occur rather randomly.
Probably, the process depended much on the initial condition. Moreover, 6-mode
and 4-mode, which had never been observed in room temperature, appeared in this
region. In that sense, this region can be called chaotic. It is not clear by what
quantities this chaotic nature should be described.

On the other hand, for very low temperature drops did not show vibration. The
critical temperature for occurrence of vibration is not yet obtained, though it seems
to be around -100°C.

5. Discussion

In this article results of observation, linear analysis and model simulation are
introduced. They gave us a lot of information on the phenomena, but the present
status of the research is still not satisfactory and main problems are left unsolved,
i.e., the mechanism of maintenance of vibration, that of mode selection and the
physical state of evaporating surface. Important factors for excitation of polygonal
vibration may be the variation of the surface tension coefficient, caused by the
surface motion itself, and/or the thin vapor flow between the drop and the floor.
Analyses of these factors are challenging and will be made by the authors in near
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future.

In concluding this article, the significance of investigating the drop vibration
is mentioned. Formation of macroscopic order in an inequilibrium systems is
attracting interest of scientists with a name “dissipative structure” (Gransdorff and
Prigogine, 1971). Are the patterns observed in evaporating drop the dissipative
structures? The answer is “yes” in a sense that they occur in conditions out of
thermal equilibrium. However, there is also an essential difference. In usual
dissipative structure, degrees of inequilibrium are not so large that macroscopic
fluid velocity is relatively small and the system shows in most cases only single
mode for given values of parameters. The vibration of an overheated drop, on the
contrary, is a phenomenon in a highly inequilibrium state. The drop shows not only
a rapid motion, but also a successive transition to other modes.

Another characteristic feature is the change of system size. During the size
change the drop made transitions to modes, which would be the most preferred ones
for respective sizes. Such series of dynamical patterns can be looked upon as a
pattern formation in the space-time framework. It may be an interesting concept to
be investigated as a fundamental science.
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