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Evolution of Antiphase Ordered Domain Structure
and Phase Separation Activated by Ordering

Kenichi SHITYAMA, Hiroshi NINOMIYA, and Tetsuo EGUCHI

Department of Applied Physics, Fukuoka University, Fukuoka 814-01, Japan

Abstract. Computer simulations in two dimensions were carried out on the
dynamics of pattern formations of ordered domain structures on isothermal ageing
in ordering alloys, which are observed under an electron microscope as dark field
images by the use of superstructure reflections. Three cases were considered: the
first case is a simple one of the evolution of antiphase ordered domain structures in
an alloy of uniform composition, often observed in various binary alloys. In
particular, the results of our simulation were compared satisfactorily with the
observed features of formation and movement of antiphase boundaries (APBs) in
Fe;Al on ordering from B2 to DO;. The second case is the pattern formation of
antiphase structures on phase separation induced by ordering, observed in Fe;Al.
In this case both the local degree of order and the local composition variable are
coupled to change with ageing time. The pattern obtained by our simulation has an
excellent similarity to the ones observed under an electron microscope in Fe;Al on
the phase transition from B2 to A2 + DOj3. The third case is also the phase separation
activated by ordering, but with a high anisotropy, as is observed in Fe-Si on the
phase transition from B2 to B2 + DOj;. All through our simulation we have used a
continuum model for the alloy under consideration, which is represented by the
local degree of order and the local composition parameter. The equations of motion
for these variables have been derived from an appropriate thermodynamical
potential by the method of so-called TDGL (time-dependent Ginzburg-Landau).
The overall agreement of our results of simulated patterns and the corresponding
observed electron micrographs indicates the adequateness of the TDGL method,
and suitableness of our thermodynamical potential.
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1. Introduction

Alloys have many countenances. They look differently depending upon which
means are used to observe them. By naked eyes, for example, their colors, shininess,
shapes etc. are seen. Under optical microscopes, they show us their textures, grain
boundaries etc. Or, under high resolution electron microscopes, their patterns of
atomic arrangements are observed as their lattice images in nm world. Here in this
report, we shall discuss on the countenances of alloys in pm order of magnitude,
which are quite different from those in mm or nm world, and furthermore, those
countenances or patterns change rapidly at first and then slowly later with ageing
time. We are particularly interested in their images when they are observed in an
electron microscope as dark field images using a superstructure reflection. In this
case the ordered regions in the alloy are observed in white contrast, whereas the
disordered ones and the antiphase boundaries (APBs) in black one.

Photo. 1 shows examples of electron micrographs of CuZn and FeCo in the
ordered state, as dark field images by the use of 100 superstructure reflection, taken
by Tomokiyo (1989). In these micrographs of the typical ordering alloys, the
antiphase ordered domain structures are recognized. The next example, Photo. 2,
isaseries of dark field images of Fe, Al taken with the DO; superstructure reflection,
by Oki et al. (1974, 1977). showing the evolution of ordered DO; phases among
disordered ones in the course of ordering from B2 to DO,. By our analysis (Eguchi
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Photo. 1. Dark field images of electron micrographs of ordered CuZn and FeCo taken with the 100
superstructure reflection. White regions show the ordered phases, and the black ones the antiphase
boundaries (APBs). Courtesy by Tomakivo (1989).
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Photo. 2. Dark Field images of electron micrographs of Fe;Al, showing the process of ordering from
B2to A2(a) + DO5, taken witha DO, superstructure reflection (Okiefal., 1974, 1977). The process
is a typical example of the isotropic phase separation induced by ordering.

et al., 1984) it has become clear that these patterns are created by the process of
phase separation activated by ordering. The third example, Photo. 3, is a series of
electron micrographs of Fe-Si alloy in the course of ordering also from B2 to B2 +
DO; taken by Matsumura et al. (1989), which, however, show highly anisotropic
phase separation and ordering.

The main subject of the present report consists of the three parts. The first one
is the evolution of antiphase ordered domain structure, like the ones in Photo. 1, on
annecal-ageing an alloy from its disordered state. The process has most extensively
studied in Fe; Al by Matsumura (1990) and by Allen and Krzanowski (1985), Park
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Photo. 3. Dark field images of electron micrographs of Fe-Si, showing the process of ordering from B2
to B2 + DO;, taken with a B2 and a DOj superstructure reflection (Matsumura et al., 1989). The
process is a typical example of the process of anisotropic phase separation induced by ordering.

and Allen (1986) and Krzanowski and Allen (1986) by in situ observation in an
electron microscope. The second case is the process of phase separation induced by
ordering, which was studied by Oki er af. (1977) as mentioned already. The third
casc is the process of phase separation also induced by ordering, which was
observed by Matsumura et al. (1989) in Fe-Si alloy, who found that the process
seemed isotropic at first, but later it became highly anisotropic. In order to interpret
these processes, and make two-dimensional simulations for the patterns of ordered
domain structures, we use a continuum model for the alloy under consideration, and
derive the equations of motion for the mean fields of the local degree of order s(r,
{) and/or the local compositional variation x(r, 7), under suitable assumptions as to
the thermodynamical potential of the system, which comprise the bulk free energy
and interfacial energy along the interfaces of changing degree of order or com-
positional field.

2. Process of Formation of Antiphase Ordered Domain Structure

In our first case of an evolution of antiphase ordered domain structure, readers
are called for their attention to the experimental result by Matsumura (1989), Photo.
4, who observed the process of DO; ordering of Fe;Al, after quenching from B2
state, in an electron microscope by the dark field image method using the DO;
superstructure reflection. Here, the small domains of imperfect degree of order are
created randomly among disordered (B2) matrix, and they change their shapes and
sizes vividly in the early stage of isothermal ageing. As the anneal-ageing proceeds
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Photo. 4. Dark field images of electron micrographs of Fe, Al, showing the process of ordering from B2
to DO;, taken with a DO; superstructure reflection (Matsumura, 1990).

those domains grow larger and sometimes they begin to coalesce when two of them,
which happen to be of the same phase, become in contact. On further annealing the
ordered domains grow in their sizes and the degrees of order. After the disordered
phase disappeared, only the ordered domains and APBs remain to exist. The in situ
observation by Park and Allen (1986) in this later stage of ageing shows that the
APBs move slowly to smooth themselves, and small domains keep shrinking and
then disappear.

In order to analyze such a process of evolution of antiphase ordered domain
structure, we start from the thermodynamical potential of the following form, which
includes only the local degree of order s(r, £) as a continuous field variable (Ninomiya
et al., 1990).

Flistr.o}] =] {f(s)+(1((r)/ 2)(\7;)2}(!3,- (1)
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where f(s) is Landau’s free energy density per unit volume for the system undergo-
ing the order-disorder transition of the second order, as given by

f(s)=—A(T)s* / 2+ B(T)s* / 4. (2)

A(T) changes from negative to positive, as the temperature is lowered from above
to below the critical temperature 7 for the order-disorder transition, whereas B(T)
is always positive. K(7) is the positive interfacial energy per unit length along the
boundaries of changing degree of order. The composition of the alloy is assumed
constant uniformly in the alloy. Now the equilibrium degree of order at the
temperature 7 is obtained from (2) by minimizing f{s) with respect to s, or df/ds =
0, as s = £S5.(T), where S(T) = {A(T)/B(T)} 2 for T< Ty, or S, = 0 when T> T} This
means that the critical temperature 7} is given by the root of A(7) = 0. The equi-
librium distribution of the local degree of order s(7, £) = s(#) should be given by 6F/
8s=0, If, however, this condition is not satisfied, then the process of relaxation takes
place, which will be described by the equation of motion:

s / 6t =—M(T)(SF / 3s),
or a5 / ot = M(T)B(T)|S,(T)’ =5 }s + M(T)K(T)V?s, (3)

where M(T) is the positive reaction rate depending upon the temperature 7. After
certain suitable scale changes, the above equation of motion reduces into a simple
nonlinear partial differential equation, which is valid for the case of isothermal
ageing:

as/at=s(1—s2)+v2s, (4)

in a new dimensionless space-time world.

In the actual calculation Eq. (4) was replaced by a corresponding difference
equation, which was solved at first in a one-dimensional mesh of 640 points, and
then in a two-dimensional mesh of 200 x 200 points. The periodic conditions at the
boundaries were imposed as usual, and, as the starting values for s(r, 0), a series of
small random numbers around zero level were distributed among the mesh, in order
to represent the noise of the degree of order introduced in the course of quenching
from disordered state at a high temperature to a low one, preceding the ageing at the
temperature 7'below T;. The integration of Eq. (4) by a small time-interval At was
repeated, and the number of iteration in our simulation corresponds to the ageing
time in the actual experiment.

Figure 1 shows an example for the one-dimensional simulation for the
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Fig. 1. One-dimensional simulation of the development of antiphase ordered domain structure, based
on Eq. (4). The solution started from a series of small random noises at the bottom of the figure,
and ended up with a structure of ordered domains structure shown at the top, with the saturated
degree of order but with the opposite phases and APBs between them.

evolution of antiphase domain structure, where one can observe that at first an
irregular wave with various wavelengths and waveheights is created from the initial
noise, but that the wave gradually changes its shape into the domains of various
sizes with opposite phases and saturated degree of order. The domain boundary
between two fully grown domains with different phases, or of s =+1 and s = -1,
shows a definite magnitude of slope of s, which coinsides with that of the stationary

solution of Eq. (4), obtained analytically as s(r) = tanh(r/,/7 ), under the boundary

conditions s =0 at»=0and ds/dr=0at »=too. Atthis stage, the pattern, or the shape
of the wave, has almost ceased to change.

Now, look at the two-dimensional simulation shown in Fig. 2. Since we are
looking at the pattern of s, rather than s itself, in the electron microscopy by the
method of dark field images by the use of a superstructure reflection, both the
pattern of s, calculated directly from Eq. (4), and the one of s? are shown in Fig. 2.
In the pattern of s, given in the lower frame, the value of s at each mesh point is
represented either in white if s > 0 or in black otherwise, whereas in the s? pattern,
shown in the upper frame, the point is either white if s> > .1 or black otherwise. As
is seen in Fig. 2, a vivid change in the pattern of s takes place in the early stage of
ageing, but the magnitude of degree of order is still too small to be recognized as
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Fig. 2. Two-dimensional simulation of the development of antiphase ordered domain structure, based
on Eq. (4). The solution started from a series of small random noises at the left side of the figure,
and ended in a structure of ordered domains and APBs shown at the right. The lower frames show
the values of s, in white if s > 0 or in black otherwise, whereas the upper frames the values of s>
in white if s> > .1 or in black otherwise.

ordered domains in the s2 pattern, and the specimen is still in the disordered state
when observed under an electron microscope. As the ageing is continued, some of
the small domains grow up larger, and sometimes coalesce with the neighboring
domains, when they are of the same phase, or touch with other domains by APBs,
when they are of opposite phases. At this stage the ordered domains change rapidly
their sizes and shapes, and some of them grow in magnitude of the degree of order,
appearing as ordered regions in the pattern of s2. After more ageing most of the
ordered domains are fully grown, but there still remains some disordered regions
among ordered domains. And finally the disordered regions disappear, leaving only
the APBs between the domains. These APBs move slowly to make themselves
smooth, and small domains keep shrinking and then disappear, to be swallowed by
the surrounding large domains of opposite phases. These characteristic features of
our simulation is quite consistent with the electron microscopic observations of
ordering in Fe;Al by Matsumura (Photo. 4) and by Park and Allen (1986).

In this respect Park and Allen (1986) made further an interesting experiment.
They introduced intersecting APBs in an Fe; Al specimen by twisting it slightly, and
observed the behaviors of APBs in situ by an electron microscope at an elevated
temperature a little below 7. They observed that the intersecting APBs are cut and
rounded at the intersections. We made a simulation for this process in a mesh of 100
x 100 by making pairs of intersecting APBs as a starting distribution of s(r, 0), and
began the iteration of integration of Eq. (4) in order to pursuit the change of pattern.
As is shown in Fig. 3 we found that the APBs with smaller angles always remain
to exist, whereas those with larger angles disappear. This tendency is quite in
conformity with the actual electron microscopic observation by Park and Allen
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Fig. 3. Change of pattern of a pair of intersecting APBs. In order to demonstrate the effect each frame
of the series of simulation in the 100 x 100 mesh is displayed in a 2 x 2 squares. The simulation
started from the intersecting APBs in the left side of the figure, and as the iteration of integration
of Eq. (4) proceeded to the right, APBs were cut and rounded at the intersection, leaving the APBs
of small angles, in conformity with the observation by Park and Allen (1986).

(1986), and looking back also to our own electron micrographs of Fe;Al, we found
some cases which show the result of a similar separation of the intersecting APBs.
See the first frame (a) of Photo. 2 (OKki et al., 1977).

We tried also a computer experiment of the shrinkage of a circular domain.
From the original equation of motion Eq. (4), it can be shown that a fully grown
circular domain of the radius R shrinks approximately at the rate of dR/d¢=—1/R.
In order to test the above rule, we made a large circular domain of the fully ordered
state as an initial distribution of s(r, 0) in a mesh of 100 x 100 points, and started
the iteration of integration. The result of simulation is shown in Fig. 4, which

R?

Fig. 4. Simulation of the shrinkage of a circular domain. A large circular domain prepared in the 100
% 100 mesh kept shrinking by ageing and then disappeared. Also shown is the change of the radius
R squared vs. ¢ the ageing time.
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includes also the the change of the radius measured on the print-out. As is seen in
the figure the result of this simulation is quite satisfactorily interpreted by the #!/2-
law.

From the comparison between our simulation series, like Fig. 2, and the
corresponding in situ observations by Park and Allen (1986) and Allen and
Krzanowski (1985), we can roughly estimate the numerical values for some
combinations of parameters appearing in Eq. (3). Table 1 shows an example of such
an analysis, and the mutual consistency of the values of parameters obtained
independently, and the reasonable values obtained for the thickness of APBs seem
to indicate the adequateness of our interpretation of the evolution of antiphase
ordered domain structures in the alloys by using Eq. (3) or (4).

3. Process of Phase Separation Activated by Ordering-the Isotropic Case

We have already seen in Photo. 2 an example of the case, in which the phase
separation takes place induced by ordering from B2 to a + DOj state in the Fe; Al
system. In order to interpret such a process, we suggested a model in which the alloy
is regarded as a continuum represented by the two field variables, the local
concentration variable x(r, t) of solute atoms, which is conserved, and the local
degree of order s(r, ¢), which is not conserved (Eguchi et al., 1984; Eguchi and
Ninomiya, 1988; Shiiyama et al., 1990). The thermodynamical potential of the
system A(j_xy2B(1+x)» is assumed as

F[{x(r,t),s(r,t)}] = .[ {f(x,s) +(H(T)/ 2)(Vx)2 +(K(T)/ 2)(Vs)2 }d3r, (5

where x(r, t) is the deviation from the average composition X, and the bulk free
energy f(x, s) is given by

F(x,5) = A(T)x> = A(T)Xo(T)*s% / 2+ A(T) X, (T)*s* / 4+ A(T)x%5* /2, (6)

under the assumption that the order-disorder transformation in this case is of the
second order, and that the phase separation cannot take place in the disordered state,
but can in the ordered state, provided that the conditions 4 > 0, 0 < X; < X, and X2
+(1-X,)?<1are satisfied. In Fig. 5 the free energy AX, S) given by (6) is represented
as a function of X and S in equi-energy curves, and also the free energy for the
equilibrium, f{X, S.(X)) where £S.(X) is the equilibrium degree of order at the
temperature under consideration. The spinodal line, which is one-sided here, and
the phase boundaries between the mixed phase field and the ordered one or the
disordered, in the equilibrium phase diagram, are given by Xy(7) and X|(7) or X5(7),
respectively, where X, = {(X? + 2X,2)/3}V2 and X, = (X? + X,%)/2X,. The phase
diagram thus obtained, shown in Fig. 6, resembles the one under consideration in
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Fig. 5. Free energy flX, S) of the system, given by (6), as a function of the average composition X and
the uniform degree of order S. As can be seen from the equi-energy curves, fX, S) has a saddle
point around X = § = 0, which means that the system is stable against a small disturbance in the
concentration X, but is unstable against any small one in the degree of order S. Also shown is the
free energy for the equilibrium f{.X, S.(X)) for the ordered and disordered states. The shaded region
in the X,-X plane is the one in which the conditions for the existence of mixed phase of those states
are satisfied.

the FesAl system. Now the equations of motion for the relaxation from the
nonequilibrium state are given by ox/0t = L(T)V3(8F/dx) and 8s/0t = —M(T)(SF/s)
with L(T) and M(7) as the positive reaction rates. These equations are rewritten as
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Fig. 6. An example of the equilibrium phase diagram obtained from the free energy fX, S) under the
conditions given in the text. Note the existence of the mixed phase of the ordered and disordered
states. See the curves for the equilibrium free energy AX, S.(X)) in Fig. 5.

follows, after a suitable scaling into a dimensionless space-time world (Eguchi and
Ninomiya, 1988):

Ox /ot =-Vi+2V2x + Vz(xsz)

and Js/ dt = as(Xg ~x%- X]2s2)+ﬂvzs, (7)

where o and B are certain parameters depending upon the ageing temperature. A
series of the two-dimensional simulation in a mesh of 200 x 200 points are re-
produced in Fig. 7, where the patterns of s(r, 1), s(r, £)* and x(r, ?) are given in time
sequence of ageing. Here again we started from the disordered state in a uniform
composition, with small noises in x(r, 0) and s(», 0) around zero level, and the
iteration of integration by every short time interval was carried out.

As the iteration proceeds the noises in the x-field once almost disappear, be-
cause the system is stable against any small changes in the composition (see Fig. 5),
but the changes in the s-field is pronounced, and through the coupling between the
two fields, the x-field is activated in a kind of a resonant way to the s-field (Eguchi
et al., 1984). The evolution of the patterns of s2 in our simulation has a remarkable
resemblance with our observation of the process of phase separation induced by
ordering, shown in the dark field images of Fe; Al taken with an electron microscope
by the use of DO; superstructure reflection (Oki et al., 1974, 1977). Thus, we are
confident that the process of ordering and phase separation occurring in Fe; Al was
consistently accounted for by our model with the thermodynamical potential (5) and
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Fig. 7. A set of examples of two-dimensional simulation for the process of isotropic phase separation
induced by ordering, described by Egs. (7). In the figure the values of x(r, f) are expressed in white
if x <0, or in black otherwise, whereas those of s(r, £) and s(r, £)* in the same way as before. The
patterns of s® correspond to the dark field images in electron micrography.

(6), and the equations of motions (7) derived from it.
4. Anisotropic Phase Separation Induced by Ordering

As mentioned in the introduction, Fe-Si alloy behaves in a similar way as Fe-
Al system, but the main difference between the two lies in the fact that although the
antiphase ordered domain structure in Fe-Al is apparently isotropic without any
preferential direction for the APBs and the boundaries between ordered and
disordered phases, but that in the case of Fe-Si system the domain structure is highly
anisotropic. Matsumura, Oyama and Oki (1989) carefully investigated the process
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in Fe-Si under an electron microscope, and found that the evolution of the patterns
of ordgred domains seemed isotropic up to the intermediate stage of ageing, but that
in the later stage they became anisotropic with almost rectangular Si-rich ordered
precipitates in the disordered matrix with less Si. The process they observed is
clearly recognized in Photo. 6, which comprises a series of electron micrographs of
dark field images, taken with the same sample but with the various ageing times.

In order to interpret such a process theoretically, and to make a simple
simulation using equations of motions for x(r, ) and s(r, #) with a result of aniso-
tropic phase separation, a straightforward way would be to consider the
microelasticity, as was done by Cahn (1962), due to the lattice distortion in the
regions of varying composition, which arises from the difference of lattice param-
eters of the component metals. We did not, however, follow this elaborate work, but
took a phenomenological approach to generalize the equation of motion for the
phase separation to include the anisotropy. In order to illustrate our method, we
consider first a simple case of spinodal decomposition in a disordered alloy with a
nonlinear effect, which is described by the thermodynamical potential:

Fl{x(r.0)}]=] { f(x)+(H(T) / 2)(Vx)? }d3r,

with f(x)=A(T)-B(T)X3x* / 2+ B(T)x* / 4, (8)

which leads to the equation of motion:
ox /&t = ~L(T)H(T)V*x - L(T)B(T)(X; ~3x7 |V *x + 6L(T)B(T)x(Vx)’, (9)

where A(T) and B(T) are certain positive parameters, whereas +X,(7) are the phase
boundaries and +X(7) = +X,(7)/+/3 are the spinodals. Equation (9) is essentially
Cahn’s equation for spinodal decomposition (Cahn and Hilliard, 1958, 1959; Cahn,
1961), but for the last nonlinear term which prevents the numerical solutions from
overflow. When the decomposition has some preferential directions, then the
isotropic equation (9) has to be generalized, so that the whole equation is invariant
under any rotation, but that the coefficient of the derivatives must be slightly
modified by regarding them as tensors.

Thus LHV4x must be replaced by Z(LH)qp,50%x/0r,0rgor,0rs, LBVZx by
2(LB)p0%x/0r,0rg, and LB(Vx)? by Z(LB)4p(0x/0r,)(0x/0rp). If the sample under
investigation is of a cubic lattice, as is the case of Fe-Al and Fe-Si systems, then the
cubic symmetry reduces the rank of tensors concerned or the number of their
independent components. Thus the symmetric tensor of the second rank becomes
a scalar, and the tensor of the fourth rank with a complete symmetry reduces its
number of independent components into two, say I';; and I, in the conventional
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notation, and finally the equation of motion (9) is modified as, after a suitable
scaling:

ou /0t =-Vu+ 29" u— (1= |V2u+ 2u(Vu)’, (10)

where u(p, 1) is a variable proportional to x(r, ¢), and y is a new parameter repre-
senting the anisotropy, ory=T"|,/T";;, withy = 0 a special case for the isotropy. The
new symbol V " represents V ** = §%/0n20C% + 04/0C20E2 + &*/0E20n?2. Here we have
changed our space-time world (r, #) into a new dimensionless one (p, T), where the
space coordinates are written as &, 1 and C. In order to see how the value of y affects
the patterns of phase separation, we demonstrated in Fig. 8 the evolution of the
patterns of u(p, 1) for the three cases of y=+1,0, —2. In the figure, the readers will

A

Fig. 8. Examples of two-dimensional simulations for the process of anisotropic spinodal phase
separation, described by Eq. (10), fory=0, +1 and 2.
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see that the patterns started from the same fine and small distribution of the
deviation in the solute concentration, and little hint of anisotropy could be
recognized, in any of the three cases, up to the intermediate stage of ageing, but that
inthe later stage, as the deviation became larger, the directional preferences became
distinct in the cases of nonvanishing y, and in the last stage the patterns of the
deviation are predominant in the <I11> direction in the case of y = +1 or in the
<100> in the case of y = 2. In the case of y = 0, on the contrary, no trace of pref-
erential directions is discerned, as was expected by the theory. In the actual spinodal
decomposition in the alloys of cubic lattice, the patterns observed under electron
microscopes are well known to be either one of these three cases.

Now, in order to simulate the phase separation in Fe-Si system observed by
Matsumura, Oyama and Oki (1989), which we have already seen in Photo. 4, we
have made a generalization to the coupled equations of motion Egs. (7), similar to
the one we made in Eq. (9) to obtain (10). Thus the new set of equations are:

O/ 0t ==Vix+ 299" x+2Vx + V2 (x57),

and Js /ot = as(Xg —x? - Xlzsz) +pVis. (11)

The simulation developed in Section 3 was the special case of isotropy, y = 0. To
simulate the case of Fe-Si system, we chose tentatively the case of y=-2, and tried
a various set of values for other parameters. In Fig. 9 the result of one of our
simulation patterns is shown, which we consider is most likely to be compared with
the observed one. In the figure it is seen in the pattern of s2, which corresponds to
the dark field images of electron micrography, that the evolution of ordered
domains is expected isotropic up to a certain intermediate stage of ageing, but that,
as the change in s is reflected in the change of x, the pattern of s2 becomes gradually
anisotropic, and finally the rectangular precipitates are formed in the pattern of x.
In this last stage the pattern of s? is almost similar to the one of x, but a small dif-
ference is noticed between the two in the sense that in the s? pattern large ordered
domains are rectangular, but the small ones are circular, in contrast to the x pattern
where all precipitates are rectangular. In this connection readers are to be reminded
that the patterns of s2 were made to represent the regions in white if s >.1. When
this criterion is raised a little, for example s? > .15, then we obtain the pattern shown
in Fig. 10, which is almost identical with that of x. This shows, on one hand, that the
pattern of compositional variation can be guessed properly by the pattern of ordered
domains only after an enough time has elapsed for ageing, and that the absolute
magnitude of the degree of order should be sufficiently high for that purpose, on
the other. Up to the intermediate stage of ageing the patterns of x(r, £) and s(r, f) are
largely different from each other.
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Fig. 9. A set of examples of two-dimensional simulation for the process of anisotropic phase separation
induced by ordering, described by Eqs. (11). The anisotropy parameter y is assumed to be —2. The
values of s(r, 7)? are expressed in white if s> > .1 in the same way as before.

Fig. 10. The last frames of the simulation patterns of Fig. 9, but the values of s(r, #)? are expressed in
white if s2 > .15. See the similarity of the pattern of s(r, £)? to that of x(r, #), which is expressed in
white if x <0.
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5. Conclusion

In the development of the theory and the simulations described above, the
alloys were assumed to be a continuum, whose local state of phases is represented
by the local composition, which is conserved, and the local degree of order, which
is not conserved. The equations of motion to describe the local dynamics of phase
transition were derived by the so-called TDGL (time dependent Ginzburg-Landau)
method, from the thermodynamical potentials appropriately assumed to include the
physical essence of the processes in compact forms, or the equations were
generalized under the consideration of transformation characters and symmetry. In
the three different cases of the simulation, our results were quite consistent with the
actual observations of the evolution of patterns of ordered domains, by the method
of dark field images in the electron microscopy, and showed the reasonableness of
our interpretation, that in some alloys such as Fe-Al or Fe-Si the phase separation
is activated only by ordering (Eguchi et al., 1984). The problems are left, however,
untouched for the future tasks to investigate the patterns in more complicated
ordering processes, especially those in the first order transitions or in the cases in
which more than one degrees of order are involved. There is also a standing problem
to find a linkage between the atomic discrete model and the continuum approxima-
tion. The phenomenological generalization of the equation of motion developed in
the last section has to be derived directly from the microelasticity approach. In this
respect an elaborate work by Onuki (1990) might be attractive. We should like,
however, to stress the powerfulness of the TDGL method within a continuum model
to interpret the physical background of phase transitions.
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