Research of Pattern Formation, edited by R. Takaki, pp. 445-468.
© KTK Scientific Publishers

Selfsimilar Natures of Drainage Basins

Eiji TOKUNAGA

Faculty of Economics, Chuo University, Hachioji, Tokyo 192-03, Japan

Abstract. Two branching systems, named Branching Systems I and II, were
examined theoretically to clarify selfsimilar natures of drainage basins. These
branching systems were characterized by value of the parameter ,&,, which denotes
the average number of streams of order y entering into a stream of order 7 from the
sides. Put &5 = ,,&,_s and K = g4/, | for ¢ > 2. Then Branching System I is defined
as the system which satisfies the condition that g, and K are constant respectively
for all possible ¢. When ¢&)/¢; # &3/¢,, put K’ = g4/€4 | for ¢ 2 3. Then Branching
System Il is defined as the system in which g, &,, and K’ are constant respectively
for all possible ¢. Regularly selfsimilar drainage networks can be drawn following
the definitions of both the systems. If streams are assumed to meander selfsimilarly
in them, the fractal dimension D, of a stream is given by the stream length ratio R;,
the basin area ratio R, and the fractal dimension D, of the drainage baisin. Namely
D, = DylogR;/logR,, where

R, =|:2+81+K+\/(2+€1+K)2—8K:|/2

for Branching System I and

R, =[2+‘~;I+K'+\/(2+g1 +K') —4(2K'+£1K’—82)}/2

for Branching System II. The drainage network which belongs to either of these
systems has the fractal dimension of D, for any value of D, which satisfies the
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inequality 1 < D, < D, It is reasonable to consider that randomness affects more or
less confluences of stream channels in actual drainage basins. Branching System I
is appreciated most applicable to actual drainage basins among some devisable
branching systems including Branching System II because it permits smooth
interposition of randomness on the confluences of stream channels.

1. Introduction

The laws of drainage composition have been thought for a long time to be
expressed by geometrical progressions constituted with parameters called the
bifurcation ratio, basin area ratio, stream length ratio, etc. (Horton, 1945; Schumm,
1956; Morisawa, 1962). If these geometrical progressions are valid, the parameters
should express the properties of a drainage basin which are independent from its
size.

Such properties of drainage basins are noted at present in the field of fractal
geometry because those were regarded as to incarnate the selfsimilar natures of
actual substances (Mandelbrot, 1977, 1983). Several selfsimilar branching systems
have been proposed to simulate drainage basins (Mandelbrot, 1977, 1983). Some
of them satisfy Horton’s laws of basin areas and stream lengths, but do not satisfy
his law of stream numbers given by the geometrical progression. On the other hand,
Tokunaga (1978) has proposed the drainage basin model in which the laws of basin
areas and stream lengths are given by the geometrical progressions but the law of
stream numbers takes another form.

This paper is written to give a geometrical basis to interpretation of the laws
of drainage composition using the concept of selfsimilarity in fractal geometry.
Then the drainage basin model proposed by Tokunaga (1978) was examined in
relation to regularly selfsimilar forms. Some branching systems which seem not to
be realistic as a model for actual drainage basins were also examined to get deeper
understanding of selfsimilar natures of drainage basins.

2. Selfsimilar Drainage Basin

There is a clear evidence that Horton (1945) had the idea which would be
developed to the concept of selfsimilarity in fractal geometry. He tried to illustrate
the development of a drainage network in Fig. 1. We find a gern of the concept of
selfsimilarity in this figure. Two subbasins on both sides of the mainstream in Fig.
1-(C) can be regarded as geometrically similar with the basin in Fig. 1-(B). We can
see further development of the basin in Fig. 1-(D) following the rule to draw a finite
Peano island (Mandelbrot, 1977, 1983) shown in Fig. 2. Horton (1945) tried to
explain the hydrophysical basis of his laws of stream numbers and stream lengths
by the illustrations in Fig. 1. The drainage network in the finite Peano island,
however, does not satisfy Horton’s law of stream numbers. This will be shown later
together with the explanation on the characterization of drainage networks by
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Fig. 1. Development of a drainage net in a stream basin schematically illustrated by Horton (1945). After
Horton in Geological Society of America Bulletin, vol. 56, 340 page.

Tokunaga (1978).

Some branching systems were related to another types of selfsimilar forms. A
network composed of ordered streams is drawn together with a peninsula composed
of triadic Koch curves, famous fractal (Mandelbrot, 1977, 1983), in Fig. 3-(I).
Strahler’s ordering method is available for this network when a trifurcating point
was regarded as to be composed of two bifurcating points which were dislocated
from each other at an infinitesimal distance. Each ordered stream has one to one
correspondence to a peninsula of the appropriate size. The drainage basin of order
Kk in the finite Peano island is obtained by transforming the stream network and the
outline of the peninsula in Fig. 3-(I) continuously. Then the outline becomes the
drainage divides.

The drainage basin of order kin Fig. 4, which was named a drainage basin with
sink holes here, is also obtained by transforming the stream network and outline of
the peninsulain Fig. 3-(II) continuously. The outline is composed of two self similar
curves and each curve may be called a pentadic Koch curve. All drainage basins in
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—— Stream of order k —— Stream of order (kK —3)
—— Streamof order (k—1) - Drainage divide

—— Streamof order ( x-2)

Fig. 2. A drainage basin in a finite Peano island drawn by referring Mandelbrot (1977). In the basin, ¢,
=land K=2.

Figs. 2 and 4 satisfy the condition of selfsimilarity (Mandelbrot, 1977, 1983). The
basinarearatiois4in Figs. 2 and 7 in the largest drainage basin in Fig. 4. The stream
length ratio is 2 in Figs. 2 and 3 in the largest drainage basin in Fig. 4. These two
drainage basin models provide a hint on classifying branching systems and it will
be shown in the next section.

3. Law of Stream Numbers and Classification of Selfsimilar Branching
Systems

Tokunaga (1966, 1978) has proposed a parameter different from Horton-
Strahler’s bifurcation ratio. That is the average number ,¢,, of streams of order y
which enter into a stream of order 1 from the sides in a drainage basin. Actual
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e Stream of order
—— Stream of order (K —1)

“F’ —— Stream of order (k -2)

Fig. 3. (I) Triadic Koch curves and a stream system, (II) Pentadic Koch curves and another stream
system.

drainage basins satisfy approximately the following relation (Tokunaga, 1966,
1978; Onda and Tokunaga, 1987).

k€k-1= k-18xk-2= 7" = 1418,

k€27 k-18k-3= """ T 2142 &3

(1)

K €x-¢p Tr-1€x—g-1= " T 44482
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Fig. 4. Drainage basins with sink holes. In the largest basin, ¢, =3, &, =8, and K’= 3. In the basin which
has the outlet at the top left-hand corner or at the bottom right-hand one, &, =5, &, = 18, and K’
=4

where K is the highest stream order and A is the lowest one in a basin on topographic
maps or aerial photos of a given scale. In Fig. 5 a value of order is increased by
Strahler’s method, but the highest and lowest orders are given by variables
following the method by Tokunaga (1978). Equation (1) provides a subsequent
parameter: g, = &, 4. Actual drainage basins satisfy the following equation with
regard to this parameter (Tokunaga, 1966, 1978; Onda and Tokunaga, 1987).

& _ & &y

= e = = . (2)

81 82 8¢_1
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~~—~— Stream of order k
——— Stream of order ( K- 1)
—~—— Stream of order ( Kk —2)

———  Streamof order ( x-3)

Drainage divide

Interbasin area

Fig. 5. Hypothetical drainage basin. A case that &y =1 and K = 2.

This equation also provides a subsequent parameter: K = &, /&, | = €4/€4.1-

Tokunaga (1966, 1978) derived the equation, which expresses the law of
stream numbers using &, and K, from Eqgs. (1) and (2). Then the law of stream
numbers is given by an alternating equation. The average number ,u,, of streams
of order v in a basin of order 7 is

248 P oy 248 -0

n-v
M=o b P o | ®)

where

P=[2+£1 +1<—\/(2+g1+1<)2 —SK}/Z,
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Q=[2+81+K+ Je+e +K)2—8K]/2,

ain=1,and pu, =2+ g. The mathematical pocedure to derive Eq. (3) from Egs.
(1) and (2) is shown in Appendix I. The basin in Fig. 5 is drawn rather ideally
because in each subbasin ¢, takes the value same with that of the whole basin for
a given value of (n — w). However ¢, may take a value different in respective
subbasins in an actual drainage basin. The drainage basin model defined to satisfy
Egs. (1) and (2) is called the cyclic system (Tokunaga, 1978). The law of stream
number is also expressed by a continued fraction (Tokunaga, 1972). The continued
fraction is given as follows:

nH 2K

v
———=2+¢g+K- (4)
nHy+1 2+ +K- 2K
2+ +K- 2K
nun—l
nHn

The mathematical procedure to derive Eq. (4) from Egs. (1) and (2) is also shown
in Appendix I.

The drainage basin in Fig. 2 satisfies Egs. (1) and (2) withg; =1, K=2,P=
1, and Q = 4. The equations which state the relation of stream number to order in
the drainage basin are obtained by substituting these values into Egs. (3) and (4).
Namely,

GHy = =47V 4~ (5)

and
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=5- (©)

.—lw\-h

These equations show that the law of stream numbers of a drainage basin in the
finite Peano island can not be expressed by a geometrical progression and the
drainage basin is only one example among the branching systems which were
characterized by Egs. (1) and (2).

The selfsimilar drainage basins in Fig. 4 satisfies Eq. (1) but does not Eq. (2).
In the largest basin, &) =3, &, = 8, &5 =24, g,= 72, --. Therefore &,/¢; = 8/3 and &/
& = &4/e5="--=3. Then the following relation is induced instead of Eq. (2) for such
a branching system.

&
L2 8 _ % _ . (7)

81 82 £¢_1

where ¢ > 3. Here put K’ = g4/¢4 ;. Then the equation which expresses the law of
stream numbers is obtained. That is written as follows:

2+¢ - P _ 24¢ -0 -
W'uW = /l ' Q'n W+ rl rQ P’n v (8)
o-p P' -0

where

1t>'=[2+g1 FK =248 + K —4(2K’+81K’—82)}/2,

Q’=[2+81 +K'+\f(2+51 +K') ‘4(2K'+8‘K,_82)}/2’

oy =1,and pu, ; =2 + &;. The mathematical procedure to obtain Eq. (8) is shown
in Appendix II. The law of stream numbers is also given in the form of continued
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fraction as follows:

"+ K'—
RERTRY S T ©)
nHy 1 2+& +K' — L 2
K'+&K' -
2+81+K'—u
nHn-1
nHny

The mathematical procedure to obtain Eq. (9) is also shown in Appendix II. The
above equation indicates together with Eq. (4) that structures of this kind of
selfsimilar figures are expressed imaginably by continued fractions. For the
drainage basin of order kin Fig. 4, &, =3, &, = §, and K’= 3. Consequently, P’'= 1
and Q'= 7. Therefore, the equations which state the relation of stream number to
order in the drainage basin are given as follows:

2 1
n”w=§7n u/+§ (10)
ﬂng_;’] (11)
nHy+1 8- —
8 _

For the drainage basin which has its outlet at the top left-hand corner or the
bottom right-hand one, & =5, & = 18, and K’ = 4. Therefore P'= 1 and Q"= 10.

The drainage basin illustrated in Fig. 6 is obtained by regulating the form of
the fractal called plane-filling recursive bronchi (Manderbrot, 1983). Then this
basin can be called regulated plane-filling recursive bronchi. A drainage divide
drawn beside a stream in Fig. 6 should be considered to approach the stream at an
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Fig. 6. Regulated plane-filling recursive bronchi drawn by referring Madelbrot (1983) (¢, =0 and X is
indeterminate).

infinitesimal distance in reality. This drainage basin satisfies Eqs. (1) and (2). Then

& = 0 and K is indeterminate. On the other hand, the famous fractal called a

fudgeflake (Mandelbrot, 1983), satisfies Eqs. (1) and (7), for which &, =0, &, = 1,
'=2,P’=1,and Q’=3.

The regularly selfsimilar forms presented here show that Egs. (1), (2), and (7)
were employed for a classification of branching systems. The branching system
which satisfies Egs. (1) and (2) was named Branching System I and that which
satisfies Egs. (1) and (7) Branching System II.

4. Laws of Basin Areas and Stream Lengths

The drainage basins illustrated in Figs. 2, 4, and 6 were regularly constructed.
Therefore we can readily know the laws of basin areas and stream lengths of those
drainage basins seeing the figures. Mathematical deductions are, however, needed
to introduce such laws for drainage basins characterized only by Egs. (1) and (2) or
Egs. (1) and (7).

With the assumption that a drainage basin was divided into infinitesimal
subbasins and interbasin areas (cf. Fig. 5) in the ultimate, Tokunaga (1975, 1978)
derived the law of basin areas from Egs. (1) and (2). The law was expressed by the
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progression of common ratio Q as follows:
4,=0""4, (12)

where A4, is the average area of basins of order n and 4, is that of order y. Con-
sequently Q is the basin area ratio. The mathematical procedure to derive Eq. (12)
from Egs. (1) and (2) is shown in Appendix III. As shown in Figs. 2 and 6, 0 =4
for a drainage basin in the finite Peano island and Q = 2 for the regulated plane-
filling recursive bronchi.

The law of basin areas for Branching System Il was expressed by the following
equation.

4,=0""4, (13)

where Q' is the basin area ratio. The mathematical procedure to obtain the above
equation is shown in Appendix IV. As shown in Fig. 4, Q’= 7 for the largest basin
and Q’= 10 for the second largest basins in the figure. The fudgeflake satisfies Eq.
(13) with Q’=3. This is understood by seeing the illustration by Mandelbrot (1983).

Here, let D, be the fractal dimension of a drainage basin. Then one can readily
know that D, = log7/log3 in the largest basin and D, = log10/log4 in the second
largestbasins in Fig. 4, while D, =2 in Figs. 2 and 6, and in the fudgeflake, according
to its definition by Mandelbrot (1977, 1983). In Figs. 2, 4, and 6, each ordered
stream is given by a straight line, and therefore, has the one dimensional measure.
Seeing the figures, one can readily understand that Horton’s law of stream lengths

is satisfied and the stream length ratio is given by Q0"Pr or 0'V/Ps This implies that
the law of stream lengths can be easily deduced for the drainage networks composed
of streams expressed by straight lines. However, such networks are not real as
models for natural landforms. Mandelbrot (1977, 1983) has proposed to approxi-
mate a river course by a wiggly selfsimilar line. A drainage network composed of
wiggly selfsimilar streams is of a general character in the meaning that their
dimension is given by a variable. This will be shown hereafter. Some parameters
are needed to obtain the equation which expresses the law of stream lengths for such
a network.

Here, let denote the distance in the straight line between the uppermost point
and the lowest one of the stream of order 17 by /,, and that of order & by /:. Then the
following relation must be satisfied in a selfsimilar drainage basin.

D, D D
. :lf)h /Anzlnfl/An_lz =[§h /Ag: (14)

This equation states merely the dimensionless relation between the two quantities,
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namely, length and area of geometrical similar basins. For the basins with reason-
able irregularities, /,, [, etc. are given by the average values.

For Branching System I, the following equation is derived from Eqs. (12) and
(14).

l_ﬂz_lﬂz =15_+1= e = QP (15)
Lo Dy I;

For Branching System II, the following equation is derived from Egs. (13) and
(14).

l—nzin—_—lz =l§+1 = ... :Q'I/Db (16)
o 1, I;

The drainage basins in Figs. 2 and 6 satisfy Eq. (15) and those in Fig. 4 and the
fudgeflake satisfy Eq. (16).

Here, let denote the number of steps of dividers of opening /; along the stream
of order nby N, ., where n>&anditis assumed that N, -can take non-integer values.
Then the length L, : of the stream of order 17 measured by the dividers is &, nele Let
assume the following relations between streams of various orders:

:Nr]+l,§+2 :Nr],§+l = anl,g =
’ :Nn+2,5+2 :Nq+1,§+1 ZNn,z; =0
C =N e TN ea = Npoe= (17)

Then the fractal dimension D, of an ordered stream is given by the following
equation according to its definition by Mandelbrot (1977, 1983).

D, =10g(N, ¢ / N, 1)/ log(ly, /1) (18)

From Egs. (15), (17), and (18), the following equation is obtained for
Branching System 1.

LT]yé - Nﬂ»ﬁ lé — N’l.é =QDJ/Db (19)
Lyve Nyaele Ny

From (16), (17), and (18), the following equation is obtained for Branching
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System 1I.

L N .1

né _ _"'né ¢ Nn’é _Q,DS/D,, (20)

Ln—l.é Nn—l,é lé N

The procedures to derive Egs. (19) and (20) are shown in Appendix V.

The above equations mean that the stream length ratio is QD Do or 9P Dy
when lengths of streams of various orders are measured by dividers of a certain
length opening. Therefore, they also provide the equations which express the law
of stream lengths for Branching Systems I and II. The equations are written as
follows:

D,(n-vy)/D,
Ly =L, 0" (21)

,Dy(n-vw)/D,
Lye =L, 00" (22)

For D, = 1, validity of these equations is readily confirmed by examining Figs. 2,
4, and 6.

Let denote the stream lengthratio L, ¢/L,, | by R;, and the basin area ratio by
R, then Egs. (19) and (20) are rewritten as follows:

D, = DylogR, /logQ = DylogR; /logR (23)

D, = D,logR, /logQ’ = D,logR, / logR, (24)

These equations show that the fractal dimension of a stream is given by the stream
length ratio and the basin area ratio, and the fractal dimension of the drainage basin
for Branching Systems I and II. The figure of a fudgeflake shows that R, =2 and
Q’=R,=3 in it (Mandelbrot, 1983). Substituting these values and D, =2 into Egs.
(24) yields D, = log4/log3. This value coincides with that obtained by Mandelbrot
(1983). Equations (23) and (24) are also valid for the one dimensional stream
channels in Figs. 2, 4, and 6.

5. Fractal Dimension of a Drainage Network

Tarboton et al. (1988) showed that the fractal dimension of actual drainage (or
channel) networks is near 2. Their theoretical explanation is, however, made based
on Horton’s laws of stream numbers and stream lengths. The problem on the fractal
dimension of a drainage network is clearly explained by using Branching Systems
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introduced in this paper. Let denote the total length of streams constituting a
network of order 1 which satisfies the definition of Branching System I by L,, then
L, is given by the following equation.

n
L= ZLVA& nHy
v=¢

where Lg : = [z From Eq. (21), L, - = L%QD"'( v=e)Dy . Substitution of Eq. (3) and
this equation into the above equation leads to

= (QD_‘./D,,-I)”_é”

1_QDX/D,,—]

L =Cl.Q"*.

(QD\./Db /P
1-(o"* / P)

)n—<§+1

+ Gyl P15

(25)

where C, = (2 + & - P)(Q—~P)and C, = (2 + & - Q)/(P — Q). Here put N(/y) = L,
/1¢, then the Dj-dimensional measure M of the drainage network is given by

M= 1lim N(L)” = 1lim Li>!
(n-&)>w (é)é (n-&)>w re

From Eq. (15), léD’) = 1,?” Q_( n-¢) _Substitution of this equation and Eq. (25) into the

above equation leads to

_(QDX/Dh—I)""gH

- QP /DT

M= lim I2|C-
(n-&)—>w

- s ! p— n-¢ s 1 By
+C2,(P/Q)n é_(QD/D 1) (QD/D /P)
1-(0%™ /)

Here, QD‘ "Dl <1 for1< Dy < Dy and Q > P. Therefore,
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_1\1-¢ . -
lim (@21 <o, lim (P/Q)"%=0
(n—é)—w(Q ) (n—é)—m( 0)
Consequently,
>
Mz____l_QDj/ b (26)

When [, is finite, M takes finite values. This means that the dimension of the
drainage network which satisfies exactly Eqs. (1) and (2) is D;,. The D,-dimensional
measure of a drainage network of Branching System II is obtained by substituting
Q’into Q and C’; = (2 + ¢, _ P)/(Q’— P’) into C| in Eq. (26). This means that the
dimension of the drainage network which satisfies exactly Eqgs. (1) and (7) is also
Db.

6. Selfsimilarity of Actual Drainage Basins

The selfsimilar drainage basins illustrated in Figs. 2, 4, 6, and the fudgeflake
differ from actual drainage basins in some points. All the subbasins in them are
drawn similarly with the respective main basins. On the other hand actual drainage
basins take more or less irregular shapes for random components acting on them.
In Fig. 6 and the fudgeflake, &, = 0, but such a situation seldom happens in actual
drainage basins because confluences of stream channels are affected also by
randomness. Actual stream channels bifurcate and wiggle in general. This means
that the stream channels in Figs. 2 and 4, which ever trifurcate and were expressed
by straight lines, were divorced from reality.

There are some disagreements between the selfsimilar drainage basin models
drawn regularly and actual drainage basins as shown above. These models,
however, help us with better understanding of the structure of drainage basins.
Recursivity is a key concept to understand the structure of selfsimilar figures.
Equations (3) and (8), which express the law of stream numbers of Branching
Systems I and II respectively, were derived from the corresponding recurrence
equations as shown Appendices I and II. Equations (12) and (13) show recursive
relations of areas of ordered basins. Equations (21) and (22) also show recursive
relations between lengths of ordered streams. Consequently Branching Systems I
and II can be called recursive systems. The drainage basin which satisfies Eqgs. (3),
(12), and (21) approximately with ¢; and K given by the average values is regarded
to be statistically recursive and selfsimilar belonging to Branching System 1.

It seems possible to define the many types of recursive and selfsimilar
branching systems by equations besides the ones mentioned already. For example,
the branching system defined by Eq. (1) and the following relation is imaginable and



Selfsimilar Natures of Drainage Basins 461

it will probably satisfy the condition of recursivity as well as selfsimilarity.

& & & & &
£2 83,84 55 224

& & & & €y

Here it should be, however, noted that the law of stream numbers given by Eq.
(3) was derived empirically at first and only Branching System I has been verified
in actual drainage basins (Tokunaga, 1966, 1978; Onda and Tokunaga, 1987).

There is, however, still a discrepancy even between Branching System I and
actual drainage basins. The subbasins of the lowest order in an actual drainage basin
have finite sizes while Branching System I was built on the assumption that a
drainage basin can be ultimately divided into infinitesimal subbasins and interbasin
areas. This postulation is common to the drainage basin models which were built
on the basis of fractal geometry. The discrepancy mentioned above was one which
lies between an ideal gas and real gases. Larger is the difference between the order
of an actual drainage basin and the lowest order of subbasins in it, more favourable
is the postulation to it.

Equation (3) shows that the plots of logarithm of stream number to order of
Branching System I exibit upconcavity except the case of K =0 at the part of higher
orders and then logQ means the gradient of asymptote which the plots approach at
the part of lower orders (Tokunaga, 1966, 1972, 1978). The bifurcation ratio which
was obtained by applying a straight line to the semilogarithmic plots should be
related to the basin area ratio in the manner that the bifurcation ratio takes the value

somewhat smaller than the basin area ratio Q. The stream length ratio O "Dr isalso
as a matter of course related to the basin area ratio Q.

Shimano (1978) studied the relations between the parameters of Horton’s
laws, viz. the bifurcation ratio, the basin area ratio, etc., of 180 drainage basins in
the Japanese Islands. Then the streams were ordered by Strahler’s method on
topographic maps of 1:50,000. Areas of the basins range from 14 km? to 165 km?
and most of them were located in mountainous regions. The orders of almost all
basins were expected to exceed 3 judging from their sizes and locations. The values
ofthe parameters were obtained from the best fit regressions of straight lines applied
to semilogarithmic plots. The study shows that the basin area ratio R 4 is related to
the bifurcation ratio Rg with the equation; R, = 0.966Rz + 0.430, and then the cor-
relation coefficient is 0.876. The study also shows that the stream length ratio is
related to the basin area ratio with the correlation coefficient of 0.709. The value of
basin area ratio exceeds that of bifurcation ratio in 161 basins. The equation and the
values of correlation coefficient demonstrate the applicability of Branching System
I to actual drainage basins.

Branching System I is unique in describing the mean state of drainage basins
constructed by random confluences of stream channels. That is explained by using
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the terms; topologically distinct channel networks, topologically random channel
networks, infinite topologically random channel networks, etc. defined by Shreve
(1966, 1967, 1969). The mean state of infinite topologycally random channel
networks satisfies Egs. (1) and (2) with £, =1 and K=2. Therefore, the law of stream
numbers for the population of infinite topologically random channel networks is
obtained by substituting &, =1, P=1,and Q=4 into Eq. (3) (Shreve, 1969; Tokunaga,
1978). The law of basin areas for the population is obtained by substituting O = 4
into Eq. (12) (Tokunaga, 1978). It has been shown that finite topologically random
channel networks with considerablly large number of first order streams satisfy
approximately Egs. (1) and (2) (Tokunaga, 1972). In this way randomness is
smoothly introduced into Branching System I without disturbing its selfsimilarity
and recursivity.

On the other hand, Branching System Il rejects to introduce randomness in the
manner same with the case of Branching System I by the relation that &,/ # &3/¢;,
though it possesses the nature of selfsimilarity and recursivity.

Onda and Tokunaga (1987) calculated the values of ¢}, K, and Q in 11 actual
drainage basins. The result shows that the value of O exceeds 4 in 10 basins. The
measurement of basin area ratio by Shimano (1978) shows that it is below 4 only
in22 out of the 180 basins which make the average value of 4.52. These values mean
that stream confluences do not happen completely at random but were affected by
non-random force, because the expected value for Q or the basin area ratio in infinite
topologically random channel networks was 4 (Tokunaga, 1978).

Here it should be noted that the value of Q or the basin area ratio is not so far
from 4 in actual drainage basins. This fact indicates that randomness should be
evaluated as one of the important factors which controls the confluence of stream
channels. Therefore, Branching System I seems to be favourably applicable to
actual drainage basins in a homogeneous environment, in that it permits the
interposition of randomness in the confluence of stream channels.

Branching System II has not yet been tested against data obtained in actual
drainage basins. Therefore, there are no confident bases to affirm or deny its
applicability. Consideration on the role of randomness in the stream channel
confluences in Branching System I, however, suggests that Brahcing System II or
more complicated systems will not be widely applied to actual drainage basins.

The fractal dimension of a drainage basin without “sink holes” is 2. Therefore,
that of the drainage network in it should be 2. This was endorsed by the values
obtained in actual drainage basins by Tarboton et al. (1988).
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Appendix 1

The following equation is derived from Egs. (1) and (2) by using K.

K
-
)My =2cbpn t ZglK" lK#n (A_l_l)
n=A+l1
A shift of the index (A—>A + 1) yields
< —A-2

cHa =2K”/1+2 + ZglK" I ad] (A—l—Z)

n=A+2

where 1, .=1and gy =2+¢;. Subtracting Eq. (A-1-2) x K from Eq. (A-1-1)yields

M2 :(2+81 +K)K”A+1 = 2K, 14 (A_1_3)

This equation is rewritten as follows:
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2K
S S g +K-
cH 41 wHav
kHa+2

The above equation holds for A < k —2. Put k= nand A = y in the equation. Then
expansion of the consequential equation up to y = 1 — 2 leads to Eq. (4). By sub-
stituting (A + 1 1) into A in Eq. (A-1-3), the following equation is obtained.

K.ul+n—1 =(2 +é& + K)K:u/l+n - 2KK.“/U—17+1
This equation holds for 1 < <x—A—1 and is rewritten by using P and Q as follows:
K“l+r]—1_PK“/'L+T]:Qku/'l,+n_QPKul+7]+l (A_1_4)

Equation (A-1-4) x Q" is

Qn_l xcHain-1 _QTI—IP kHrsn = Qn xkMHjpin ~ QnP xkHasn+1 (A 1= 5)
The product of Eq. (A-1-5) forn=1,2,, k—A-11is

—1

H (Qn_l K:u/l+n—l_Qn_1P K/J).+71)

K—A
n=1

k—-A-1

)
= H (QTI K'u/l+11—QnP x/i/1+,7+1) (A—1—6)
n=

—_

The following equation is derived by eliminating the equal terms in the both sides
in Eq. (A-1-6) and putting .u,. =1 and .. =2+ ¢.

A Y =QK7171(2+31)”QK'%1P (A-1-7)

This relation holds for A < k— 1. By substituting (A + n— 1) into 4 in Eq. (A-1-7)
and multiplying consequential equation by P71, the following equation is obtained.

n-1 _pn
P K:ul+n—1 P K”/l+11

S QNPT (24 ) - QF AT (A-1-8)



Selfsimilar Natures of Drainage Basins 465

The sum of Eq. (A-1-8) forn=1,2, ..., (k= A1) is

k—-A-1

)
Wy~ P (24 g)= Y [Q""“"P"—‘(2+sl)-Q"“-"P"]
n=1

Then,

l_(P/Q)x—A—I _Pl_(P/Q)K~/l—1

Kk—A-1
= 2+¢
i =0 (2+2) 1-P/Q 1-P/Q

+P* (24 g) (A-1-9)

Put k = n and A = y in Eq. (A-1-9). Then Eq. (3) is obtained by rearranging the
consequential equation.

Appendix II
The following equation is derived from Egs. (1) and (7) by using K".
M :(2+51)K/1/1+1+ ZSZK'T’_A_ZKHU (A-2-1)
n=A+2
A shift the index (A — A + 1) in the above equation leads to
Mo =(24 &) )ekyin + Zgszn-l%K“n (A-2-2)
n=A+3

where .= 1, and . ; =2 + &;. Subtracting Eq. (A-2-2) x K’ from Eq. (A-2-1)
and rearranging the consequential equation yield

My =248 +K )y —(2K + 6K =6 iy, (A-2-3)

Equation (A-2-3) holds for A < x—2. Put k= nand A= yin the equation. Then , 11,/
7My-+1 can be expanded into the continued fraction given by Eq. (9).
Substituting (A + 11— 1) into A in Eq. (A-2-3) yields
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cHasn-1 =(2 té T K’)Klu/l+n —(ZK, +K'— &, )x:u,1+11+1

This equation is rewritten by using P’and Q" as follows:

kHypsn-1— Pté:u}mn = Q;clu)mn - Q'P,éll,1+,.’+x
This equation holds for n=1, 2, -, k— A — 1 and takes the form same with Eq. (A-

1-4). Then Eq. (8) is obtained through the procedure same with that to derive Eq.
(3) from Eq. (A-1-4).

Appendix III
Let &be the lowest basin order in the basin of order x and assume that the basin
of order kis divided into infinitesimal subbasins and interbasin areas in the ultimate

according to Egs. (1) and (2). When (k— &) — oo, the following equation is derived
from Egs. (1) and (2) by using K.

k-1
A =24, ,+& 2 K4, (A-3-1)
n=¢
A shift of the index (x —» k- 1) leads to
K-2
A =24, 5 +& 2 K24, (A-3-2)
n=¢§

Subtracting Eq. (A-3-2) x K from Eq. (A-3-1) and rearranging the consequential
equation yield

A =(2+¢& +K)A,_, —2KA,_, (A-3-3)
Equation (A-3-3) is generalized by substituting 7 into k.
A, =(2+& +K)A4, | -2KA, , (A-3-4)

Let suppose subbasins of order A in the basin of order k, where x> A + 2. Then the
equation which expresses the relation among 4,, 4;., and 4, is derived from Eq.
(A-3-4) in the way similar with that to obtain Eq. (3). The equation is given as



Selfsimilar Natures of Drainage Basins 467

follows:

AK =A/‘L+l _PAJ. Qx—l +A/'L+1 -—QAA. PK—}. (A—3_5)
0-P P-0Q

The same relation can be assumed among 4, 4., and 4 by supposing basins of

orders lower than £ Namely,

A
A4, =0*¢ Az
A 0-P P-Q

~PA; | Ag — 04 (ﬂj
0

A shift of the index (A — A + 1) leads to

_ _ A-E+1
4, = QFE! A —PA; Ae —04: (P
A+l T Q—P P—Q Q

Here, Q > P. Therefore,

(l.!igr;‘laoo(A'“'l /4 ) =0

Substituting A4,,; = QA4 into Eq. (A-3-5) yields
A =054, (A-3-6)

Equation (12) is obtained by putting k= n and A = v in Eq. (A-3-6).

Appendix IV

Let £ be the lowest basin order in the basin of order k and assume that the basin
of order k is divided into infinitesimal subbasins and interbasin areas in the ultimate
according to Egs. (1) and (7). When (k- &) — oo, the following equation is derived
from Egs. (1) and (7) by using K.
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K=2
A =(2+&)A +& LK T4, (A-4-1)

n=¢§

K =
A shift of the index (x — x— 1) leads to
K-=3
Ay =(2+8) A+, 2K, (A-4-2)
n=¢§

Subtracting Eq. (A-4-2) x K’ from Eq. (A-4-1) and rearranging the consequential
equation yield

A =(2+& +K)A —-(2K' + K —&)4, , (A-4-3)

Equation (13) is derived from Eq. (A-4-3) in the way same with that to obtain Eq.
(12).

Appendix V

The following equation is derived from Eq. (18).

DS
Ny ! Ny =(lear /1) (A-5-1)
Substituting /z./l;= Q""" in Eq. (15) into the above equation yields

Npe!Nppy=0>"" (A-5-2)

n&+1

Equation (19) is obtained by substituting N,, =,; = Ny, | - in Eq. (17) into Eq. (A-5-
2).
The following equation is derived from Eqgs. (16) and (A-5-1).

,D,/D
Npe/Nyea=0 ’

Substituting N, &1 = N, ¢ into the above equation yields Eq. (20).



