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We propose a model of random dendritic structures, which is
based on random aggregation of flows in d-dimensional space. This
model, in the case d=2, becomes Sheidegger’s model of rivers, and
in the case d=3 it may be regarded as a model of blood vessels.
Random dendritic structures numerically produced by this model
are found to be fractals, and their fractal dimensions are
estimated as 1.50, 1.85, 1.6 and 2.00 for d=2,3,4 and 2z 5,
respectively. Size distribution of the fractals obeys a power
law and the whole space is packed densely with those dendritic
structures.

g1 Introduction

In nature, we can find a variety of complicated dendritic
structures such as lightnings, rivers, blood vessels, cracks,
etc. Although each of them belongs to different field of science,
their geometrical structures look very similar. There might be a
common origin.

About 30 years ago, T. Okamoto developed a theory of
dendroid system (Okamoto:1951). He considered conservative flows
which have the nonlinear property that flow efficiency is higher
for stronger flows. In such situation, flows are apt to join
together in order to make the total flow efficiency higher. By
applying variation principle, he showed that the flow pattern
which maximizes the total efficiency is dendritic. His results
are worthy of attention, however, he failed to obtain realistic
dendritic structures because no randomness is taken into account
in his model.

Recently, one of the authors has studied the pattern
formation process of dendritic structures in brittle fracture and
electric breakdown (Takayasu:1985), and the following fact is
clarified. In these problems, tensions in brittle fracture and
electric currents in electric breakdown can be regarded as the
conservative flows, namely, they satisfy the conservation law.
The elementary process of fracture and electric breakdown play
the role to join the flows. In the case that there are random
fluctuations in some field variables such as rigidity or
conductivity at the initial state, the flows gradually Jjoin
randomly and form a dendritic structure at the end. It is very
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interesting that nonlinearity of flow efficiency introduced by
Okamoto is not neccesary in these cases. Instead of 1it, other
mechanisms which combine the flows successfully create dendritic
structures. From this result, we may conjecture that the most
important point for +the dendritic structures 1is the simple
aggregation process of conservative flows.

In the next section, we propose a very simple model of
random dendritic structure based on the above idea. River-like
dendritic structures will be created numerically in d-dimensional
Euclidian lattice space, and their size distribution and the
fractal dimension (Mandelbrot:1982) will be considered. In the
third section, we will discuss about the suitability of our model
to the natural dendritic structures. A short comment on the
relation to the problem of directed percolation (Grassberger:
1983) and diffusion limited aggregation (DLA) (Witten & Sander:
1983) which have been attracting much attention in the field of
fractal theory will also be noted in that section.

§2 The model

First, we introduce a model of rivers so called Sheidegger's
model (Sheidegger:1967). Let us assume the situation that rain
is falling stationarily and uniformly on a slope. If the slope
surface is not flat but has random irregularities, then fallen
rain drops will walk down the slope with random fluctuations.
When two rain drops collide, we regard them to be joined and make
one drop. After the collision, the united drop is assumed to walk
randomly just like before the collision. As a model of rivers,
trajectories of each random walk and the collision points will be
considered as tributary streams and confluences, respectively.

In order to analyse numerically, we discretize this model.
Rains are assumed to fall on the nodes of the oblique lattice in
Fig.l and these points are regarded as sources of water of the
same intensity on the plane. The ordinate x; is discretized to
the slope and every flow drifts to that direction. In this
discretized model, flows are also discretized on the bonds of the
lattice. As a consequence of the stickiness of water drops, we
prohibit any flow to split. Flows are allowed to 90 right down
or left down only (see Fig.2). Here, the probability of each

realization is 0.5.

O O

never l
" Y g § o

Fig.1 The lattice. Water

flows on the bonds. Fig.2 Elementary flow patterns.
Lower two patterns never ocuur.
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Fig.3 shows an example of our /
simulation.We can find many dendri-
tic structures distributing densely
on the lattice. It may be obvious
from the above generating rule that
these rivers do not contain any
loop and all branches are directed
to the up stream (the direction of
-Xx1). Any two separating flows at g
upper stream are likely to join at X1
lower stream, on the contrary, I NI1I\\V /. /9 /
flows at lowgr stream never connect Fig. 3 An example of river
to another river at upper stream. pattern.

Namely, we can distinguish each
river at the lowest end.

One of the most important quantity in this system 1is the
size distribution of the rivers. Here, the size of a river |is
defined by the total number of nodes which belong to its
upstream. Since every node is the source of water of the same
intensity, s represents also the amount of flow of the river. 1If
we denote the size of river at (m,n)-th node by s(m,n), then
this quantity satisfies the following equation:

s(m+l,n) = r(m,n)-(l1+s(m,n))
+ (1-r(m,n+1))-(1+s(m,n+1)) (1)

where r(m,n) is a random number which is equal to 1 when the flow
at (m,n)-th node goes right down and is equal to 0 in the other
case. Calculating Eq.1 by computer, we can obtain the distribut-
ion of s at sufficiently lower stream. Eq.1 is solved under
periodic boundary condition on the xi axis, although the
periodicity does not afect the following result 1if the system
size in the x2 direction is chosen to be larger than or equal to
that in the x: direction. 1In Fig.4, the distribution of s is
plotted as the case d=2. Here, the system size is about 104X10¢4.
It is very clear from this figure that the distribution of s
satisfies the following power law in a wide range of s

P(2s) ® s™ , & = 0.831%0.006 (2)
i J P(zs) d=2 ¢
Yo, d=3 +++ Table 1
LI d o D
-1d 8 ° = (]
10~ PSR d=5 °o 0.331%0.006 | 1.50
gl 3 | 0.485+0.003 | 1.85
10- 21 S e, Tt 4 | 0.491%0.007 | 1.98
o, . 5 | 0.496+0.010 | 2.00
ol 8 | 0.500%0.005 | 2.00
10-3 °o TR : :
o+ : : :
® | 0.499+0.009 | 2.00
10! 108 s 10° 107

Fig.4 The distribution of s. d
denotes the spatial dimension.
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where P(2s) is the probability that the size of a randomly chosen
river is larger than s. There is a higher cut-off 1in the
distribution of s, above which the distribution of s decay more
rapidly than the power law. This cut-off (denoted by s.) |is
related to the system size in the x: direction (denoted by L) by
the following relation:
5o o /(17 (3)

This can be deduced theoretically by considering the expectation
value of s, <s>, in two ways: one is the value obtained by Eq.2
with a sharp cut-off at s., and the other is obtained by using
the relation <s> * L which is required from the generating rule
of s, Eq.l.

Since s is nearly equal to the size of the largest river,
it is reasonable to define the fractal dimension of the river, D,
from the scaling relation, Eq.3, as

D= 75 (4)

For smaller rivers, the fractal dimension is assumed to take the
same value, because smaller rivers become parts of larger rivers
if the system size is enlarged sufficiently. Substituting the
numerical value @=0.331 into Eq.4, we obtain the fractal
dimension as D~1.50.

Spectrum of s in the x2 direction is found to be white. This
means that the spatial distribution of the rivers in our model is
completely random.

Next, we extend this model to higher dimensional cases. The
extension is natural and the model can be constructed in the same
way.

Let us consider flows 1in d-dimensional Euclidian space
(X1,X2,°°-,Xg4). All points in the space are assumed to be
sources of the flows of the same intensity. Just like +the case
of d=2, x: component of any flow vector is always positive while
the other components take negative values with the probability
0.5. As a consequence, the flows may join but never split toward
the x1 direction, hence they make dendritic structures.

Discretized version of the above model for numerical
calculation can be readily constructed and we can obtain the
distribution of flow. It is confirmed that the distribution of s
follows the power 1law in any case (see Fig.4 again). The
exponent @ in Eq.2 is found to depend on the spatial dimension d.
In Tab.1, the values of o are listed with the fractal dimension.
@ increases with d while ds5, however, there seems to be a
critical dimension d.=5 above which o takes a constant value 0.5.
We can calculate the fractal dimension by using Eq.4, since Eq.4
is vallid independent of the spatial dimension d. It is very
interesting that the fractal dimension of the dendritic flows
never exeed 2 no matter how large the dimension of embeded space
is. Note that, in this model, d-dimensional Euclidian space is
densely packed with D-dimensional random dendritic fractals.

Theoretical explanation for the above results is not easy.
We have succeeded only in the case of d=2 and d=,
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In the continuum 1limit, the
flows in our model are constructed
by Brownian motions drifting toward
the x1 direction. In the case d=2,
the size of river, s, is propor-
tional to the area of its drainage
basin. And the drainage basin can
be considered by ridges (see Fig.5).
Here, the ridges are also Brownian
motions, hence s is proportional
to the area surrounded by two
trajectories of Brownian motions.
Roughly speaking, the area may be
proportional to the product of the
river's height and width. Regard-
ing the x: axis as time axis, the
distribution of the hight, L, can . .
be obtained from the distribution ' 153 r?é;gg
of recurrence of Brownian motion

..........

1
PiL) = [ [ Flgpe T

w172 gm ) (5)

It is probable to assume that the width is nearly equal to Lt!'-’2
hence, s is proportional to L3-2, Substituting this scaling
relation to Eq.5, we obtain the distribution of s as

P(2s) © § -1/3 . (6)

Here, the exponent o is 1/3 which is very close to the numerical
value a@=0.331.

In the case d=» , we apply the mean field theory. It is
convenient to regard the x: axis as time axis also, and we denote
it by t in the following discussion. Time evolution of the

distribution of s is governed by two elementary processes: one is
the collision of flows and the other is the growth caused by the
uniform rainfall. These factors can be described mathematically
by the following partial differential equation for the probabili-
ty density of s, p(s,t):

2 (s, t)+ci—pis,t) = (1-c)p(s,tr+ <=L fsp(s',t)p(s—s',t)dsﬂ

3t 3as 2 ) (7
Here, ¢ is a constant and we have neglected higher order
collisions. Stationary solution of Eq.7 can be solved analyti-

cally and p(s,+) is represented by a modified Bessel function.
Then the cumulative distribution P(2s) becomes

P(zs) ® s ~1/2 . (8)

This is consistent with the numerical result in the case d= ® ,
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§3 Discussions P S P(z2r)
As mentioned in the previous

sections, our model in the case d=2

is introduced as a model of rivers.

The fractal dimension of rivers 10%p

predicted by our model is 1.5,

while that of natural rivers is not

universal but distributing from 1.4

to 1.8 (Kunigami:1985). This means

1
that our model is not bad, however, 10
it is too much simplified to ex-
plain the diversity of rivers in
nature. We should include some L 1
geometrical factors such as the hd
roughness of earth's releaf in 10! r 102

order to improve our model.

In the three dimensional case, Fig. 8 Diameter distribution
we hope our model resembles blood of blood vessels.
vessels. The diameter distribution
of blood vessels is known to obey a
power law. In Fig.6, the cumulative distribution of blood
vessels are plotted with the diameter, r, on logarithmic graph
paper using Wiedeman's data (Wiedeman:1963). We obtain the
following distribution:

P(zr) o r 8 | 8~ 2.3 (9)

In order to relate this power law to our model, we have to find
the relation between the diameter and blood flow quantity, s.
When a viscous fluid flows through a pipe having a diameter r,

the amount of flow 1is solved analyticaly by Hagen-Poiseuille
theory as

s = —J%?1~—-r‘ , (10)

where 2 and p~ denote the viscosity and the pressure gradient,
respectively. The pressure gradient p~ is likely to be reduced
for thinner blood vessels. If we assume that p” is proportional
to r, then s becomes proportional to r5. This relation together
with Eq.9 leads the following distribution of s:

Pzs) « s73% | g5~ 0.46 . (1)

It is surprising that the exponent 0.46 coincides excellently
with @ in our model in the case d=3. Although this coincidence
depends on the above assumption of p’, we may say that our model
is good for blood vessels. This indicates that dendritic
structures of blood vessels are created by simple random
aggregation of conservative flows.
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Another candidate for our model may be the tree. The
fractal dimension of trees is kKnown to range from 1.3 to 1.8
(Morse et al.:1985), however, that of our model is 1.85 1in the
case d=3. Our model is not good for trees on the point that it
creates more complicated dendritic structures than actual trees.

Lastly, we discuss about conections with directed perco-
lation and DLA.

In directed percolation, all four patterns in Fig.2 occures
stochastically. The probability of each realization is p(l-p),
(1-p), (1-p)2 and p2 for left up case, right up case, left down
case and right down case, respectively, where p 1is a controle
parameter ranging from 0 to 1. The probabilities of the latter
two cases can not vanish simultaneously, hence, directed perco-
lation is different from our model for any value of p. It should
be noted here that the prohibition of the latter two cases , i.e.
extinction and division of flows, are neccesary for the power law
in Eq.2. If we allow the extinction or division with a certain
probability, then the power 1law will be replaced by the
exponential distribution.

DLA considers aggregation of particles, on the other hand,
our model is based on the aggregation of flows. However, if we
regard the drifting axis (xi1) as time axis, then our model
becomes a model of random aggregation of particles as mentioned
in §2. From this standpoint, DLA and our model have deep
connection to each other. The interest of DLA is mainly focused
on geometrical structure of aggregated particles, contrary to
this, that of our model is focused on the distribution of the
particles. Note that in our model scattering cross sections are
constant and independent of size of particles. Namely, we
neglect some factors such as geometrical effects and mass
contribution in our model.
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1-2

Q: What is the relationship of your model to directed percola-
tion ? (L. Sander)
A: In an ordinary percolation problem, fractal structures are

obtained only at the critical phase transition point. Contrary
to this, in our model there is no phase transition and we can
always find at least one percolation cluster among fractal clus-
ters. The percolation cluster is completely directed, namely all
branches are directed to the upper stream. In this sense our
model is related to the directed percolation.

Q: In your theory, the existence of conservative flows is
important. Then, what are conservative flows in case of trees ?
(K. Kitahara)

A: The flows of sap in branches may be conserved, however, as I
mentioned, our model is not so good for trees.
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