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Computational Geometry and Morphology
Godfried T. Toussaint

McGill University, School of Computer Science, Montreal, Canada H3A 2K6

Computational geometry is a relatively new and flourishing discipline
in computer science that deals with the analysis and design of algorithms for
solving geometric problems. Morphology is the study of form or structure as
in the case of the measurement of biological shape and shape change or the au-
tomatic recognition of shape by machines. In the latter case, we may distin-
guish between two phases of the underlying process: (1) the analysis and re-
sulting description of shapes and (2) their subsequent classification into
categories. In this paper, we survey recent computational geometric approaches
to the problem of shape description and recognition by machines. In particu-
lar, under (1) we consider the medial axis of a polygon, shape hulls of sets of
points, decomposition of polygons into perceptually meaningful components,
smoothing and approximating polygonal curves, and computing geodesic and visi-
bility properties of polygons.

1. INTRODUCTION

The term morphology is used in several disciplines in a rather narrow
sense. For example, in biology it is that branch of study that deals with the
form and structure of animals and plants [1]. In linguistics, it is the study
and description of word formation in a language. We use the term here in its
broadest sense: morphology is the study of form. The term computational geo-
metry has also been used in several different contexts. For example, it has
been used to describe that aspect of geometric modeling of solids that deals
with computational issues [2]. It has been used to describe the study of
shape recognition by certain models of parallel machines [3]. In an entirely
different context, it refers to the computational issues in <{ntegral-geometry
or geometric probability [4]. 1In this paper we use the term computational
geometry as in the work of Michael Shamos [5]. In this latter sense it forms
a new discipline in computer science recently bearing much fruit. For a text
book and collection of papers, see [6], [7]. Several surveys of this area have
also recently appeared [8] - [11].

This paper is an incomplete but representative survey of recent results
that lie in the interface between computational geometry and morphology. To
avoid duplication we concentrate on results not covered in [6] - [11] and refer
the reader to these references for earlier work as well as basics such as the
models of computation used, etc..

2. THE MEDIAL AXIS OF A POLYGON
Let P = (pl,pz,...,pn) be a simple polygon with vertices P> is=

1,2,...,n specified in terms of cartesian coordinates in order. The medial
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axis of P, denoted by MA(P), is the set of points {q} internal to P such that
there are at least two points on the boundary of P that are equidistant from
{q} and are closest to {q}. The medial axis of a figure was first proposed by
Blum [12] as a descriptor of the shape or form of the figure. It has since
evolved into a theory of biological shape and shape change [37] - [39].

Since the introduction of the notion of medial axts there has been con-
siderable interest in computing it efficiently under different models of com-
putation [13] - [23]. Most of these algorithms take time proportiomal to

n2. Recently, Lee and Drysdale [19] and Kirkpatrick [18] have presented a
general algorithm for finding continuous medial axes (or skeletons) of a set

of disjoint objects. Lee & Drysdale's algorithm takes 0(n log2 n) time
whereas Kirkpatrick's algorithm runs in O(n log n) time. Even more recently,
a simpler O(n log n) algorithm was proposed by D. T. Lee [24]. Lee [24]
shows that the medial axis is a subgraph of a structure known as the genera-
lized Voronoi diagram and his algorithm first computes this diagram and sub-
sequently removes the edges of it that are incident on concave vertices of P.

3. THE SHAPE OF A SET OF POINTS

When points in the plane have a finite diameter so that they are visi-
ble, and when they are fairly densely and uniformly distributed in some re-
gion in the plane then a human observer is quick to perceive the "shape" of
such a set. These sets are usually referred to as dot patterns or dot figures.
A polygonal description of the boundary of the shape is referred to as the
shape hull of a dot pattern, where the vertices are given in terms of the
cartesian coordinates of the centers of the dots. There are two versions of
the shape hull (SH) problem: in one there are no "holes" in the dot pattern
and the dot pattern is '"simply connected" and hence the shape hull is a simple
polygon, whereas in the more difficult problem both "holes'" and '"disconnected"
components may exist. To add to this difficulty, in some instances illusory
contours are perceived between ''disconnected" components as illustrated by
Kennedy and Ware [25]. For more details on this problem and early approaches
to solving it, see [8]. A more recent paper addressing this problem is that
of Medek [26].

In addition to describing the shape or structure of a set of points by
its shape-hull or external shape we may also use the skeleton or internal
shape. An early step in this direction was taken by Zahn [27] with the mini-
mal spanning tree. More recent approaches have used the relative neighbor-
hood graph [28] - [33].

A very elegant definition of the external shape of a set of points was
put forward recently by Edelsbrunmer, Kirkpatrick, and Seidel [34]. They pro-
pose a natural generalization of convex hulls that they call o-hulls. The
a-hull of a point set is based on the notion of generalized discs in the plane.
For arbitrary real valued a, a generalized disc of radius 1/o is defined as
follows[34]:

(i) if o>0, it is a (standard) disc of radius 1l/a;

(ii) if a<0, it is the complement of a disc of radius 1l/a; and

(iii) if o=0, it is a half plane.
The a-hull of a point set S is defined to be the intersection of all closed
generalized discs of radius 1/o that contain all the points S. The convex
hull of S is precisely the O-hull of S. The family of o-hulls includes the
smallest enclosing circle (when a=1/radius (S)), the set S itself .(for all a
sufficiently small) and an essentially continuous set of enclosing regions in
between these extremes.

Edelsbrunner et al. [34] also define a combinatorial variant of the
a-hull, called the a-shape of a point set, which can be viewed without serious
misunderstanding as the boundary of the a-hull with curved edges replaced by
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straight edges. Unlike the family of a-hulls, the family of distinct a-shapes
has only finitely many members. These provide a spectrum of progressively
more detailed descriptions of the external shape of a given point set.

Figure 1 (copied from [34]) illustrates the o-shape of a point set for two
different values of o. 1In [34] efficient algorithms are also presented for
computing the o-shapes of dot patterns consisting of n points in O(n log n)
time.

Fig. 1: Two different a-shapes of a common point set.

Subsequently, Kirkpatrick and Radke [69] outlined a new methodology for des-
cribing the Internal shape of planar point sets. We should note that the
ideas in [34] are closely related to the notions of opening and closing sets,
found in mathematical morphology [35], [36].

We close this section by describing a new graph which I call the sphere-
of-influence graph which I believe has some very attractive properties from
the viewpoint of computer vision [40].

Let S be a finite set of points in the plane. For each point x € S,
let r be the closest distance to any other point in the set, and let Cx

be the circle of radius T, centered at x. The sphere of influence graph is

a graph on S with an edge between points x and y if and only if the circles
CX and Cy intersect in at least two places. It is shown in [41] that:

(i) The sphere of influence graph has at most 29n edges (n=|S|).

(ii) Every decision tree algorithm for computing the sphere of influ-
ence graph requires at least Q(n log n) steps in the worst case.
As an application of (i), El Gindy observed that an algorithm of Bentley and
Ottman [42] can be used to find the sphere of influence graph in O(n log n)
time.

Motivated by the work in [34] we can also use the sphere-of-influence
graph to define the boundary of a planar set S as either the contour of the
union of the circles Co xe S (the sphere-of-influence hull) or the graph

composed of those edges corresponding to pairs of points in S that have ad-
jacent arcs on the contour defined above (the sphere-of-influence shape).
These structures can be computed in O(n log n) time without computing the
sphere of influence graph [40]. For the related problem of finding a per-
ceptually meaningful simple polygon through S see [49]. Finally, the prob-
lem of drawing a simple polygon through a set of line segments is considered
in [50].
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4. DECOMPOSITION OF POLYGONS INTO PERCEPTUALLY MEANINGFUL COMPONENTS
Since [9] not much progress has been made on the morphological aspect
of this problem. However, some new results are available on the geometrical
side which are relevant. Chazelle & Dobkin [43] solve the problem of decom-—
posing a non-convex simple polygon into a minimum number of convex polygons.

They obtain an algorithm that runs in O(n + c3)time where n is the total num-
ber of vertices and ¢ is the number of concave angles. For a recent survey of
this area see [44].

One decomposition which appears to capture well the morphological
aspect of the problem is the relative-neighbour decomposition [45].

In [45] an 0(n3) algorithm is given for computing this decomposition. Re-
cently, an O(nz) algorithm has been discovered [46].

5. APPROXIMATING POLYGONAL CURVES
Let P = (pl,pz,...,pn) be a polygonal planar curve, i.e., P consists of

a set of n distinct points (or nodes) pl,pz,...,pn specified by their cartesian
coordinates, along with a set of n-1 line segments joining pairs pipi+l’

i=1,2,...,n-1. Note that in general P may intersect itself. Polygonal curves
occur frequently in pattern recognition, image processing, and computer graph-
ics. In order to reduce the complexity of processing polygonal curves it is
often necessary to approximate P by a new curve which contains far fewer line
segments and yet is a close-enough replica of P for the intended application.
Many different approaches to this general problem exist and for a recent paper
with 37 references the reader is referred to [47]. Different methods are
more- or-less suited to different applications and yield solutions with differ-
ent properties. In one instance of the problem it is required to determine a
new curve P' = (pi,pé,...,pé) such that 1) m is less than n, 2) the pi are a

subset of the P> and 3) any line segment p3p3+l which substitutes the chain
corresponding to PoseeesPy in P is such that the distance between each P>
r<k<s, and the line segment p3p§+l is less than some predetermined error tol-
erance w. An often used error criterion is the minimum distance between Py

1,1 : L ) = : [ | .
and pjpj+l’ i.e., d(Pk,Pj j+l) m;n{d(pk,x)lxepjpj+l}, where d(pk,x) is the
euclidean distance. No attempt has been made at minimizing m. Recently, Imai

and Iri [48] proposed an 0(n3) algorithm for determining the approximation
that minimizes m subject to the two other constraints. Another criterion,

often used, measures the distance between Py and p3p3+l as the minimum dis-

] . . v ] .
’pj+l) colinear with pj and pj+1, i.e.,

1 1 = A Al

d(py Pyl ) min{d(p, ,%)[x € L(pi,pi,y)}

This is termed the "parallel-strip" criterion [47] since it is equivalent

to finding a strip of width 2w such that p& and p5+l lie on the center line of

tance between 18 and a line L(p3

the strip and all points 1290 r<k<s lie in the strip. 1In [47] it is shown
that if the parallel-strip criterion is used, the complexity of the algorithm

of Imai and Iri can be reduced to O(n2 log n). Furthermore, if the polygonal
curves are monotonic, and a suitable error criterion is used, the complexity

can be further reduced to O(nz).

398



Computational Geometry and Morphology

6. COMPUTING GEODESIC PROPERTIES OF POLYGONS

Given a polygon P and two points a,b € P, the shortest path (or
geodesic path) between a and b is a polygonal path connecting a and b which
lies entirely in P such that the sum of its euclidean edge-lengths is a mini-
mum over all other internal paths. Intuitively, it is the shape an ideal
elastic band would take if it were attached to a and b and the boundary of P
consisted of barriers. We denote it by GP(a,b[P) where the direction is from
a to b. Geodesic paths find application in many areas such as image process-
ing [51], operations research [52], visibility problems in graphics [53], and
robotics [57] - [58]. Recently, Chazelle [54] and Lee & Preparata [52] inde-
pendently discovered the same O( n log n) algorithm for computing GP(a,blP).
Both of these algorithms first triangulate P and then find the shortest path
in O(n) time. An algorithm due to El Gindy [55] computes GP(a,b|P) without
first triangulating P, also in O(n log n) time. More recently, it has been
discovered that a simple polygon can be triangulated in O(n) time [59]. This
result allows one to compute the geodesic path between two points in 0(n) time

[60].

In the context of morphology, shortest paths are used for measuring
shape properties of figures [38], [51], [61]. For example, the length of a
biological object [51] is the length of the longest geodesic path (the
geodesic diameter) between any pair of points in the object. Several algo-
rithms have been proposed for computing the geodesic diameter of a simple

polygon; for example, an O(nz) time and O(nz) space algorithm [54], an 0(c2n)
time and O(n) space algorithm [61] where c is the number of convex vertices,

and an O(nz) time and 0(n) space solution [62].

Another very useful geodesic property is the geodesic center of a poly-
gon, i.e., that point in P that minimizes the length of the longest geodesic
path to any point in P. Parallel algorithms for computing both the geodesic
diameter and center of a pattern on a lattice are given in [51]. Asano and

Toussaint [63] show that the geodesic center of a polyogn can be computed in

0(n41og n) time.

7. COMPUTING VISIBILITY PROPERTIES OF POLYGONS

The notion of visibility is one that appears in many applications. In
a morphological context visibility relations between vertices and edges of a
polygon can be used as shape descriptors [9]. Much attention has been given
to the problem of the visibility from a point.

A topic which has not been as much investigated as visibility from a
point concerns the notion of visibility from an edge. A polygon P is weakly
vigible from an edge [pipi+1] if for every point xe P there exists

aye [pipi+1] such that [xy] lies inside P. Given a polygon P and a speci-

fied edge [pipi+1] of P, the edge visibility polygon of P from an edge, de-

noted by EVP(P,[pi 1) is that region of P that sees at least one point of

sP
i+l

Intuitively, it is the region of P visible, at ome time or another,

i+1]. Recently, El1 Gindy [55], Lee & Lin [64],

and Chazelle & Guibas [65] all independently proposed three different algori-
thms for computing EVP(P,[pi,pi+l]) in O(n log n) time. In the case where the

[piPyyql-
by a guard patrolling edge [pip

polygon may have n "holes'", Suri & O'Rourke [66] present an O(na) algorithm
for computing the boundary of the polygonal region visible from an edge and
prove that it is optimal.

Toussaint [67] has shown that with the result of [59] the edge visi-
bility polygon of P from an edge can be computed in O(n) time. A similar al-
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gorithm was recently discovered independently by Guibas et al., [60].

A related problem concerns itself with answering queries of the type:
are two specified edges in a polygon visible [53]? While this problem can be
answered with the algorithms in [67] and [60] in O(n) time, the machinery used
[59] is rather heavy. 1In [68] it is shown that even without all the heavy
machinery of [59] such queries can still be answered in O(n) time.
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10-1

Q: Various geometrical concepts introduced by Toussaint in his
interesting review appear to have alternative designations
elsewhere especially in mathematical morphology (rf. Serra's 1982
book). Your example, 'medial axis' is alternatively 'skeleton',
and 'a-hull' is alternatively 'opening or closing by a disk of
radiuso . It does seem as though stronger links should be forged
between the relevant computational geometry and mathematical
morphology groups. This present symposium is certainly a wonder-
ful step in that direction! (R. Miles)

A: I agree whole heartedly. The main differnce between compu-
tational geometry and mathematical morphology lies not so much in
the concepts used but in their approach. Mathematical morphology
approaches problems on a digitized grid, matrix of pixels, or
lattice whereas computational geometry works in a (continuous)
vector graphics type mode. Therefore, the algorithms used and
their measures of complexity are qualitatively quite different in
both fields. A closer interaction between these two areas should
answer the question of which approach is computationally more
efficient in practice.

403



