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Structure of Random Cellular Networks
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The methods of statistical mechanics are applied to the
structure of random, space-filling, cellular structures (foams,
metallurgical grain aggregates, biological tissues). Microrever-
sibility of the structural properties under elementary transform-
ations is demonstrated. Maximum entropy inference under a few
constraints yields structural equations of state, relating the

size of cells to their topological shape. These equations of
state classify the structures, and are criteria for their random-
ness. They serve also as reference, from which deviations can

be associated with specific constraints.

INTRODUCTION

This paper investigates the form, shape and the relative
size of the cells of random, undifferentiated biological tissues,
of the grains of metallurgical aggregates, or of the bubbles of a
soap froth, in short, of random space-filling cellular networks.
These structures are, at first glance or lowest level of discrim-
ination, indistinguishable even though they originate from local
building forces which are very different. These specific forces
are therefore less relevant in determining the structure than the
inescapable mathematical constraints of filling Euclidean space,
in the least biaised, most probable fashion.

Here are some examples of identical structures (see also
Weaire & Rivier 1984):

Compare two undifferentiated biological tissues, like those
(the wing of a fly and a crab apple) adorning the frontispiece of
Dormer's (1980) book. Apart from a scale factor (the average
cell size), they are indistinguishable, meaning that they can be
interchanged without anyone noticing the substitution, even
though the two tissues are not exactly superposable. Identity of
the two tissues is a topological, rather than geometrical equi-
valence.
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STRUCTURE OF RANDOM CELLULAR NETWORKS

Similarly, the polycrystalline sample of aluminium, shown in
the last figure of Cyril Stanley Smith's (1954) essay, is, in all
aspects, indistinguishable from a soap bubble froth, and very
nearly so from biological tissues.

These structures all belong to a class, or ensemble of
random, space-filling cellular tissues. I shall explain here why
they appear identical, and which observable criterion on the form
of their cells labels them as member of that class of random
aggregates.

The most accessible random cellular network is a soap bubble
froth. One notices immediately that the size of interfaces

between bubbles and of the bubbles themselves is not fixed. It
fluctuates in space and in time as if the medium partitioned by
the bubbles was made of deformable rubber. Moreover, small

bubbles have a small number of (usually large) neighbours, and
large bubbles, small neighbours, a spatial correlation which is
topological, in that it refers to the shape of the objects making
up the structure, rather than their size (which is a fluctuating
quantity, only relevant on average). The whole froth is then
homogeneous, not in the sense of exact superposition of a pattern
with its translated counterpart (as in crystals or in elementary
geometry), but because any local difference 1is not objectively
(without using words like "I'", "here'", "this", or "now") relevant
or observable. The biological paradigm is undifferentiated
tissue. In material science, glasses and amorphous materials are
indeed homogeneous in this objective, but non-metric fashion.

And so 1is a forest in which one has got lost. (An entirely
different experience altogether from getting lost in an orange
grove - the crystalline or ordered counterpart, with metric

generative homogeneity and exact repetition of a pattern ad
infinitum).

Botanists, forty years ago, also discovered that undifferen-
tiated tissues had similar architechture to soap bubble froths,
and to compressed lead-shot (Matzke 1950, Lewis, 1943), even
though the local physical force shaping these two physical models
(surface tension versus hard core repulsion) is very different.
The situation has been neatly summarised by F.T. Lewis, (1943) as
"random avoidence of the niceties of adjustment".

Randomness of the structure, the presence of continuous
transformations, and the fact that two different structures can
be deemed identical without being superposable, imply that the
relevant geometry 1is topology (rather than metric geometry of
unit cells or Bragg peaks). Hence the actual size of edges,
cells or angles 1is of no relevance, since they can expand or
shrink as space is continuously deformed. Each structure is not
an exact copy of a unique original, but only a member of a
statistical ensemble of most probable structures under a few
constraints (constant volume and topology of the space which they

are filling). Physical or biological forces are irrelevant, to
lowest order, in framing that identical and random architecture,
which has an equation of state - (Eg. 5,6,9). Randomness also

implies that "defects", i.e. shape fluctuations (e.g. topological
dislocations - pentagon-heptagon pairs in 2D tissues -, disclin-
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ations, or odd lines in 3D (Rivier 1979)), are essential constit-
uents of the structure. It is their presence and their motion
under topological transformations, which grant froths, foams,
ceramics or tissues, their relevant mechanical, geometrical or
growth properties. (Weaire & Rivier 1984).

STATISTICAL MECHANICS OF RANDOM TISSUES

The methodology of statistical mechanics follows a suc-
cession of steps:

(1) Definition of microscopic states or configurations, and
elementary transformations between different configurations.

(2) Detailed balance or microreversibility of the macroscopic
structure under elementary transformations. This is a prerequi-
site for statistical equilibrium.

(3) Statistical equilibrium is characterized by a probability
distribution for the occurrence of microscopic configurations,
and by an equation of state, which enables us to classify the
various macroscopic structures.

Random tissues are as suitable subjects for the application
of statistical mechanics as, for example, physical gases. First
of all, the tissue contains a large number of elements (cells)
with several possible microscopic configurations (shape, and,
possibly, size of the cell). Different microscopic configura-
tions are related directly by elementary transformations (Fig 1).
The macroscopic configuration of the structure is characterized
by the probability distribution for various microscopic configu-
rations, and by averages of, and spatial correlation between
microscopic parameters. The macroscopic configuration of the
structure is invariant under elementary transformations of Fig 1,
thereby establishing detailed balance or microreversibility
(Aboav's law).

Microreversibility is a prerequisite for statistical equi-
librium, which can be obtained unambiguously by maximizing the
arbitrariness, or entropy of the structure, subject to a few
obvious constraints (fixed volume, topology, and, possibly,
constant energy). This expresses simply the fact that the system
is so large and so loose that the macroscopic configuration with
maximal arbitrariness can be realised by many more microscopic
configurations than any other, and is therefore overwhelmingly
the most probable. But this maximum entropy formalism can be
derived rigourously from probability theory (Jaynes, 1957, 1979).
It is the 1least biaised solution of the gambler's (underdeter-
mined) problem: from a few given data, find the distribution of
probabilities.

Statistical equilibrium leaves an observable signature, the
equation of state, which is a relationship between average
microscopic parameters. (Boyle- Mariotte law in ideal gases, for
example). In ideal random tissues, the equation of state is
Lewis' (1928) relation between average shape and size of a cell
(Eg. 5). The equation of state classifies random tissues, which
belong to classes or ensembles, each with its own equation of
state or its own set of constraints under which entropy is
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maximized. For example, metallurgical grains, whose interfaces
carry energy, obey the perimeter 1law (Eg. 9), rather than the
area law of Lewis (Eg. 5) which is characteristic of ideal
tissues without relevant energy constraint.

Statistical equilibrium yields also the probability distribu-

tion for microscopic configurations. This constitutes more
detailed information on the structure than the mere equation of
state (Maxwell-Boltzmann distribution of velocities in ideal

gases, for example). Distributions of sizes and shapes of cells
are obtained in Rivier (1985). Experimental distributions can be
found in Weaire & Rivier (1984), or in Smoljaninov (1980), and

those obtained by numerical simulations, in Srolovitz et al.
(1984).

This is a summary of the programme and of some results. The
rest of this paper will fill in some details.

GEOMETRY OF TISSUES, ELEMENTARY TRANSFORMATIONS

Random tissues are cellular structures filling a topological
space, where edges, faces and cells can shrink or expand continu-

ously as if they were filling rubbery space. This implies a
grammar :
1. Elementary Structural Transformations. In 2D, neighbour

switching (Tl) and cell disappearance (T2) and its inverse
(mitosis, which may consist of iterated inverse T2 and Tl) (Fig
1). In 3D, switching between neighbouring faces (seen by blowing
gently on a soap film formed on a cubic frame) (Tl), face disap-
pearance (change of cell neighbourhood), and cell disappearance
(T2) and their inverses. If interfaces are planar, and in the
absence of symmetry, neighbour switching always requires a face
to disappear (Fortes 1985).

2. Structural Stability: Only vertices with coordination z = 4
(in 3D) are structurally stable. Vertices of higher =z can be
transformed into these by infinitesimal deformations. A tissue
or froth with only structurally stable constituents is called
maximally random. This will be assumed from now on.

3. Conservation Laws: (Tissue with C cells, F faces, E edges
and V vertices, occupying a volume Q). Euler theorem: F - E + V
=1 (2D); -C+F -E +V =0 (3D); continuity of odd 1lines
(lines threading through faces with odd number of edges (3D)
(Rivier 1979). (These identities are clearly invariant under

elementary structural transformations).

Consequences: The topological random variables are n, the
number of edges on a face, and £, the number of faces on a cell.
Their expectation wvalues

<n> = 6 (2D) , <f> = 12/(6 - <n>) (3D) (1)

are consequences of the above. They are topological restrictions
or constraints on the distribution of shapes of cells. The 3D
relation is valid for every cell and for the froth as a whole.
For maximally isotropic and isochorous (equal volume) cells,
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<f> = 13.4 (exhibited in tetrahedrally close-packed, crystalline
structures like Al5 or Laves phases (Sadoc 1984)), corresponding
to <n> = 5.1, the number of regular tetrahedra sharing one edge
in Euclidean space. <f> increases if the cells become more
anisotropic; it decreases if fluctuations in their volumes
increase (Rivier 1982).

TOPOLOGICAL CORRELATIONS AND DETAILED BALANCE

Denote by m(n) the average number of edges on faces neigh-
bour to a n-sided face in the 2D tissue, and by m_.(n), the same
guantity in the 3D tissue, with all faces belonging to the same,
f-faceted cell. m (n) represents correlation between shapes of
neighbouring cells. m(n) and m.(n) obey the same recursion
relation (Eg. 2-3) if the tissue ilndergoes any one of the elemen-
tary structural transformations or their inverses (Blanc &
Mocellin 1979, Rivier 1985). This is a statement of micro-
reversibility or detailed balance: Elementary transformations
can occur independently in space or time, without affecting
statistical equilibrium and the properties (correlations, etc.)
of the structure.

The solution of the recursion relation is Aboav's law
(1970),

m(n) =5 + (6 + uz)/n (2D) (2)
(first justified by Weaire), where My = <(n - <n>)2>, and

nme(n) = 5£ - 11 - K(f - 1 - n) (3D) (3)
(Rivier 1985), where K is a constant of the froth. The limit f =

» is the correct procedure for topological stereology (deduct the
properties of a random planar section from those of a 3D froth).

Then K = 5-(12+u2)/f+... One can check Eg. 2 in the case of an
enormous bubble “in 2D. Its neighbours are indeed 5-sided on
average (m(e) = 5). Aboav's law (2) is well obeyed by all types

of random structures (Weaire & Rivier 1984).
STRUCTURAL EQUATIONS OF STATE

Microreversibility implies statistical equilibrium. Its
properties (probably distributions p(n) or p(f), and of cell
sizes, equation of state) are obtained by maximum entropy (arbit-
rariness) formalism, (MEF) (Jaynes 1957, 1978).

Statistical equilibrium corresponds to the most probable or
most arbitrary distribution of «cells, which obeys a few con-
straints. Most probable is equivalent to least amount of
implicit, additional biais, apart from that enforced by the con-
straints. It is this extremal requirement which grants unique-
ness to an otherwise underdetermined problem.

Two constraints are unavoidable and mathematical: Topology
(Egq. 1.), and filling a fixed volume Q

<'1§n> = Q/F (2D), <Vf> = Q/C  (3D) (4)
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where A , V. are the average area of n-sided faces, volume of
f—facetgd cells, respectively.

The less restrictive the constraints (1) and (4), the
larger the range of solutions. Accordingly, the most probable
distribution will also be the least limited, and corresponds to
redundant constraints, thus'Kh an or'V} a f (Rivier & Lissowski
1982, Rivier 1982)

2 (2/F)B [n - (6 - 1/B)] (2D) (5)

<l
Hh =
]

(Q/c)B [£f - (<f> - 1/B)] (3D (6)

Maximizing the arbitrariness has therefore, among others, related
the size of cells to their shape. Equation of state (5) has been
discovered empirically by Lewis (1928) in wundifferentiated,
biological tissues. Here B is an undetermined multiplier enforc-
ing the constraints. If the statistical equilibrium is main-
tained at all times, B is simply proportionnal to the time itself

B = F/o §sat (7)
dih/dt = 8(n-6) (8)
and similarly, (F-» C, n—=>f, 6 —»<£f>), in 3D (Rivier 1983). Eq.

8 is called von Neumann's (1952) law. It governs the slow
evolution of the tissue.

Equations of state (5) and (6) correspond to an ideal
tissue, governed by the minimal number of unavoidable constr-
aints, which are only mathematical and have nothing to do with
biology, physics, etc. thereby justifying the universality of
the resulting structures. Metallurgical aggregates are non-
ideal: Lewis' law is not obeyed by metallurgical grains, where
it is the average perimeter or radius R. of n-sided faces, rather
than the area, which is proportional to n, as observed experimen-
tally (Desch 1919) or in simulations (Srolovitz et al. 1984).
This fact, according to MEF methodology, betrays the presence of
(at least) another constraint, which is, obviously, the energy
carried by interfaces between grains, i.e. their perimeter. The
system increases its entropy by selecting a size-shape relation
which could be either Lewis' or the perimeter law:

— ]
Rn =a'(n - no') (9)
The maximum entropy associated with the perimeter law is larger
than for Lewis' (Rivier 1985), so that the former alternative is
selected whenever interfacial energy is relevant.

The final state of a soap bubble froth or a sintering
aggregate is also of interest. Evolution by Eq. 8 1leads to a
more differentiated tissue or froth. In fact, shape fluctuations
do saturate, u, (t = ») = (6 - a)(7 - a), where a is the number
of sides of thé smallest cells (Rivier 1985). 1If one allows for
structural mixtures of two different types of cells (cells and
pores), uz(t = o) is increased (de Almeida & Rivier 1986).
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CONCLUSIONS

Statistical mechanics of structures, and the fact that
random tissues are in statistical equilibrium, has brought in
important results:

(i) Classification of structures by their equations of state,
and uncovering of the specific (physical, biological) constraint
responsible for their difference. This constitutes an elementary
structural pathology, with the equation of state as a quantita-
tive diagnostic method.

(ii) The structural equations of state (Eg. 5,6,9) are precise,
necessary and sufficient criteria for the structure to be random.
If there is a science of form, they describe the form of random,
space-filling, cellular structures.

(iii) Randomness, through entropy or arbitrariness, is at the
essence of all these structures, which are the least biaised
partitions of a topological space between cells, grains or
bubbles. But biais itself can only be measured against a back-
ground of reversible, 1local elementary structural transform-
ations.

I am grateful to my coauthors, and to A.L. Mackay for many
useful discussions.

Fig 1: Elementary transformations in 2D: neighbour switching and
mitosis.
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