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Nonperiodic tesselation with 8-fold rotational symmetry is obtained by a
self-similar subdividing operation of two kinds of cells a rhombus and a
square. Each unit cell is derived from dividing the regular octagon which is
uniquely divided into 16 rhombi and 8 squares with 8-fold symmetry at the
center. The original unit of the tesselation is divided into 14 rhombi and 10
squares in the first subdividing operation which is called the basic unit
operation. The tesselation after n times self-similar subdividing operations
of the basic unit is called n-th generation pattern. The ratio of the number
of  squares to that of rhombi in each generation varies with n converging to
Nﬁé/z . This irrational value proves the nonperiodicity of the pattern. The
diffraction pattern of the tesselation is computed and shown to have sharp
Bragg-like peaks with 8-fold symmetry, which might prove that the tesselation
is 2-D quasi-lattice.

INTRODUCTION

Nonperiodic tesselation with 5-fold rotational symmetry is well known as
the Penrose pattern(Penrose(1974)). de Bruijn(1981) derived the two kinds of
rhombic cells from algebraic theory and gave the concept of quasi-lattice.
Mackay(1982) and Ogawa(1985) expanded the 2-D Penrose tile to a 3-D model
which consists of two kinds of rhombohedra, and elucidated the constitutions
of 2-D/3-D nonperiodic structure by the recursion rule for subdividing the
two kinds of cells(rhombi(2-D) and rhombohedra(3-D)). The diffraction pattern
is obtained using optical transform by Mackay(1982) and computed based on
mathematical treatment by Levine & Steinhardt(1984). Since Shechtman et
al(1984) discovered the electron diffraction spots with 10-fold symmetry for
rapidly cooled AlgMn alloy, many scientists (Bancel et al(1985), Kalugin et
al(1985), Kimura et al(1985), Hiraga et al(1985)) carried out the diffraction
experiments of various composition of Al-Mn alloy and observed a remarkably
similar diffraction pattern to the calculated one by Levine & Steinhardt. The
discovery of nonperiodic structure in the materials such as Al-Mn alloy made
an impact on crystallographers and proved the new concept of quasi-crystal
proposed previously by Mackay(1981) and de Bruijn(1981). It is an open
question whether there exists the quasi-lattice which shows diffraction
pattern with higher order of symmetry.

We tried to generate nonperiodic tesselation with 8-fold symmetry. In
this paper we show that the tesselation can be generated by a self-similar
subdividing operation of two kinds of cells which are derived from dividing
the regular octagon into 16 rhombi and 8 squares. Also we found a self-
similar subdividing operation for the original unit composed of the two kinds
of cells as in the Mackay's rule. In as far as we know the 8-fold symmetry
diffraction pattern of the nonperiodic structure has not yet been found, so
we try to compute the diffraction pattern of this tesselation with 8-fold
symmetry.
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PATTERN GENERATION

1. Generation of nonperiodic tesselation with 8-fold symmetry

Kramer & Neri(1984) and Duneau & Katz(1985) formulated the Penrose
pattern as a projection of the cubic n-grid of a higher dimensional space to
a lower one. The self-similar subdividing operation of rhombic/square cells
which constitute the regular octagon is another method of generating the
nonperiodic tesselations as is shown in this study.

A regular octagon with 8-fold symmetry can be uniquely subdivided into
16 rhombi and 8 squares(Fig. 1 a). An assembly of one rhombus and one square
in which one of the edges of these is shared is chosen as an original unit of
the tesselation as shown by bold lines (Fig. 1 a). The original unit is
subdivided into 14 rhombi and 10 squares (Fig. 1 b). The way of subdivision
is called the basic unit of the self-similar operation. Therefore the origi-
nal unit (Fig. 1 a) is the 0-th generation pattern, and the subdivided one
(basic unit) (Fig. 1 b) is the 1st generation pattern. We can obtain 2nd,
3rd,... generation patterns by the succeeding operation. This self-dividing
rule is derived from the regular octagon (Fig. 2 a and Fig. 2 b). The 1st
generation pattern of the square has rhombic assembly with 8-fold symmetry in
its center and that of the acute rhombus includes a regular sub-octagon which
consists of 2 squares and 4 rhombi as shown by the shaded area (Fig. 1 b),
with mirror symmetry. Therefore eight different tesselations could be derived
using the basic pattern obtained by rotating the sub-octagon about its
center. The ratio of similarity from n-th to (n+1)-th generation for this
tesselation is 1/(2+4/2). All the coordinates of lattice points in the n-th
generation pattern can be computed from those of the O-th generation pattern
by applying the self-similar subdividing operation recursively.

Fig. 1 a Divided regular octagon Fig. 1 b Basic unit pattern

AN

Fig. 2 a Selfdividing rule in Fig. 2 b Selfdividing rule in
square cell rhombic cell
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2. Proof of nonperiodicity

Mackay(1981) showed that in the pentagonal pattern the ratio of the
numbers of the two kinds of cells (acute and obtuse rhombus) converges to T
the golden number. The convergency of this ratio is investigated for octago-
nal tesselation. The ratio of the number of squares to rhombi for the n-th
generation with n tending to infinity is obtained by solving the recurrence
formula for the number of squares and rhombi. Let S, be the number of squares
and R, be the number of rhombi in the n-th generation. Then the recurrence
formula written in matrix form is

Xo = A Xpy = A" X0, (D

Here X, is a column vector given by

«-[5]
with Sp=1 and Ryp=1, and A is a matrix
A = [ ar alz] 3)
ag| az
with a;y = 6, a2 = 8, a1 = 4, azp = 6, After simple calculation we obtain A™

[ 51 (6+41/2)"+ (6-44/2)") A§{<6+4«/§>L<6—4«/§>"}}
A = : )

1
2 (6+4/2)"- 6-4/2)") L{(®+4/2)"+ (6-4/2)")
The ratios of the number of squares to that of rhombi in the n-th generation

in a square s,, that in a rhombus r,, and that in a pattern of both added t,,
respectively are expressed as

_ afp

Sn = o (%)
_ afp
_aff + ofp

fn = afy + o ™

Substituting the matrix element of eq.(4) into (5), (6) and (7), and letting
n approach to infinity then the ratios s,, rn and t, converge to »/2/2 . This
proves that the octagonal tesselation pattern is nonperiodic as in the case
of pentagonal tesselation (Mackay(1981)).
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3. Diffraction pattern of quasi-lattice

The diffraction pattern of the nonperiodic tesselation was calculated
assuming that point-like atoms are located at lattice points of the tessela-
tion. In this case the diffraction intensity of the atoms is given by

I =), exp{2ni(s—so) (ra—ra)/d} G

n,m

or
I@Q = f g(r)exp(2riQr)dxdy, (9

where g(r) is the 2-D number density function of the atom pairs, and
Q=(s-sgp)/X. There have been proposed an elegant method of the Fourier trans-
formation using projection technique (Duneau et al(1985), Elser(to be
published), Kalugin et al(1985)). However, we adopted the direct Fourier
transform of the finite number of atoms using FFT (Fast Fourier Transform)
algorithm, and this method could be applied to any nonperiodic tesselation.

I(Q) of the present octagonal pattern(Fig. 3 a) containing 1661 atoms
was calculated, and the result is shown in Fig. 4 b. In Fig. 3 b we can see
sharp Bragg-like peaks with 8-fold symmetry.

Fig. 3 a Octagonal lattice Fig. 3 b Diffraction pattern of
in rhombus cell octagonal lattice

4. Pattern generation program

A program was prepared for drawing the tesselation with 8-fold rota-
tional symmetry. The algorithm is best described using recursive function
definition because of the recursive nature of the self-similar subdividing
operation. A FORTRAN program is shown in APPENDIX-2 in which the recursion is
simulated by providing the stack for return address and 1local variables as
arrays. The function EIGHT() (actually a piece of code in the main program)
has five parameters: ALEN to specify the diagonal of the square or the
rhombus to draw, ANG to specify the angle the diagonal makes to horizontal
axis, ITY to select the rhombus or the square to draw, ISN to specify upper
or lower half drawing in the case of the square (for the rhombus a complete
pattern is drawn), and IPA to specify pattern filling or boundary drawing.
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The function is defined recursively and stops if the diagonal becomes
less than PMINL in the case of the rhombus and PMINL%RS in the case of the
square, RS being the ratio of the diagonal of the square to that of the
rhombus of equal side length. PMINL is calculated from the generation number
IGEN and the ratio of similarity R1. IGEN together with PLENG and PANGLE is
defined as input parameter. PLENG and PANGLE are passed to the function
EIGHT() as ALEN and ANGLE. Since this program traverses the same lattice
points several times care must be exercised to get rid of the cases in which
the same points have different integer coordinates due to round-off error
(add 0.51 for rounding and use double precision real variables for x and y
coordinates). The coordinates of lattice points (which are necessary for
calculating diffraction pattern) can be collected by providing a subroutine
like SETARY() which sets the current xy-coordinate of the drawing pen with
respect to the absolute origin but means are needed to reject duplications.

CONCLUSION
The division of a regular octagon into 16 rhombi and 8 squares is shown
and an algorithm for generating the 8-fold nonperiodic pattern is derived
from it. The nonperiodicity is proved by the convergence of the ratio of the
number of constituent patterns to irrational value. The diffraction pattern
is computed and shown to have spots with 8-fold symmetry. The extension to
three dimension or higher order symmetry will be the future problem.
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APPENDIX-2

[ DRAW EICHT-FOLD SYMMETRY PATTERN SEPT 9.1965 T.SOMA, RIKEN
c

IMPLICIT REAL8 (A-H.0-2)
COMMON IRET (10) .ALENG(10) .ANGLE(10) »
X ITYPE(10) . ISIGN(10) , IPAINT(10)
DIMENSION IARRAY(S)

PI = ATAN(1.)%4. define constants
A18 = PI/B.

A28 = A18+2.

A38 = A1843.

MB = A18+4.

AS8 = A184S.

A8 = A18+8.

ATB = A1847.

R=1./@. OGS(MS))

S = 1./(2.#C0S(A28))

Rl = GJS(AZB)/(Z.“(AZ) +1.)
R = Rl/(Z *COS(A18))

R3 = (A28)

Ré = M #CCS(A38)

RS = R3/Rl

S3 =Rl

S2 = S3/(2.4C0S(A2B))

S1 = S242.#C0S(A18)

S4 = S242.%COS(A38)

input parameters

READ(S, %) PANGLE
PANCLE = PANCLE « PI /180.

WRITE(6.602)
602 FORMAT(® GEN?")

READ(S.%) IGEN
PMINL = PLENG+RI+*ICEN + 0.01
WRITE(6,603)

603 FORMAT(® ARE YOU SURE?(Y/N) *)
READ(5.500) C

500 FORMAT (A1)
IF(C .NE. 'Y" .AND. C .NE. ") 0 TOS
calL initialize plot routine
I=1

ASSIGN 10 TO IW

CALL PUSH(I.IW.PLENG,PANGLE.1,1.1)

CO TO 1000 drav rbombus filled
10 ASSIGN 30 TO IW

CALL PUSH(I.IW.PLENG.PANGLE.1.1.0)

0 TO 1000 drav rhombus boundary
30 CALL PLOTE finalize plot routine

STOP

[
c mmcu EIGHT (ALEN.ANC. TTY, TSN TP&Y
1000 CONTINUE
CALL POP(I.IW.ALEN.ANG.ITY,ISN,IPA)

IF(ITY .EQ. 1) THEN
IF(ALEN .LT. PMINL) THEN drav rhombus
IF(IPA .EQ. 1) THEN
ARY (1. IARRA! t x-y coord
CALL MOVE(ALEN+R. ANG+A18) (r-a)
CALL SETARY (2, IARRAY)
CALL HJVE(ALEN‘R. ANG-A18) (r-b)
CALL SETARY(3.L
CALL MOVE(ALEN#R. ANG-AT8) (r-¢)
CALL SETARY (4,.
CALL MOVE(ALEN+R, ANG+ATB) (r-d)

CALL PATRN('PNT", "RED")
CALL POLY(4,IARRAY) drav polygon
ESE
CALL COLOR(’BLK")
CALL DRAW(ALEN#R. ANG+A18) drav
CALL DRAW(ALEN4R, ANG-A18)
CALL DRAW(ALEN#R. ANG-AT8)
CALL DRAW(ALEN4R, ANG+ATB)

ENDIF

CALL POP(I.IW.ALEN.ANG,ITY,ISN.IPA)

GO0 TO IV

et divide rhombus
ASIGI 1001 TO IW

CALL PUSH(I.IW.ALEN+R1.ANG.1,0,IPA)

GO TO 1000

1001 CALL POP(I-1.IW.ALEN.ANG,ITY,ISN,IPA)
CALL mVE(ALBIOOQﬂE) ANG+A18)
ASSIGN 1002 TO
CAIJ. Pl.lSH(I Iv. ALBI#IG ANG-ATB.0.1,IPA)
1002 CALL PG’(I-IJH.ALBLAK:‘ITY.IS(‘II’A)
ASSIGN 1003 TO IW
CAU;OPLN'I(I +IW.ALEN+R1 ,ANG-A48,1.0.IPA)
G0
1003 mu.lu’u-rmmm:mm:n)
ASSION 1004 TO
cnu. P!.N-l(! v, ALEN*IB ANC-A18.0.1,IPA)
1004 CALLPQ’(I-I IHALENANSXTYISNIPA)
ASSIGN 1005
CALL PUSH(I. IH mm ANG-A18,0,-1.IPA)
GO0 TO 1000
1006 CALL POP(I-1,IW.ALEN,ANG,ITY,ISN,IPA)
CALL MOVE(ALEN#R1, ANG)
ASSIGN 1006 TO IW
CALL PUSH(I,IW,ALEN+R3,ANG-A18,0,-1,IPA)
GO TO 1000
1008 CALL POP(I-1,IW.ALEN.ANG,ITY,ISN.IPA)
CALL MOVE(ALEN#R2. ANG-A38)
ASSIGN 1007 TO IW
CALL PUSH(I.IW.ALEN+R1.ANG+AS8, 1.0.IPA)
GO TO 1000
1007 CALL POP(I-1,IW.ALEN.ANG.ITY,ISN,IPA)

ASSIGN 1008 TO IW

set color (black)

in black

-1

(r-2)

-3

(r4)

-5

(r-6)

r-D

stack for return adrs
and varisbles

set fill mode (paint vith red)
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1010

10i1

1012

1013

1014

1020

1021

1022

1023

1028

1028

CALL PUSH(I.IW.ALEN+R1,ANG+PI.1.0.IPA) (r-8)
CO TO 1000

CALL POP(I-1,IW.ALEN.ANG,ITY.ISN,IPA)
ASSIGN 1009 TO IW

CALL PUSH(I.IW,ALEN+R1,ANG-AS8.1.0.IPA)  (r-9)
0 TO 1000

CALL POP(I-1,IW,ALEN,ANG.ITY.ISN.IPA)
ASSIGN 1010 TO IW

CALL PUSH(I.IW.ALEN+R1.ANG, 1.0.IPA)

0 TO 1000

CALL POP(I-1.IW.ALEN.ANG, ITY.ISN.IPA)
CALL MOVE(ALEN«R2, ANG-AS8)

ASSIGN 1011 TO IW

CALL PUSH(I.IW.ALEN+R3, ANG+A18.0.1.IPA)
€O TO 1000

CALL POP(I-1,IW.ALEN.ANG.ITY,ISN.IPA)
CALL MOVE(ALEN+R1.ANG+PI)

ASSIGN 1012 TO IW

CALL PUSH(I.IW.ALEN+R3.ANG+A18.0.1.IPA)
CO TO 1000

CALL POP(I-1,IW.ALEN.ANG,ITY,ISN.IPA)
ASSICN 1013 TO IW

CALL PUSH(I.IW.ALEN#R3,ANG+A18.0.-1,IPA)

€O TO 1000
CALL POP(I-1.IW.ALEN,ANG.ITY,ISN,IPA)
ASSIGN 1014 TO IW
CALL PUSH(I.IW.ALEN+R3.ANG+AT8.0.-1.IPA)
C0 TO 1000
CALL POP(I-1,IW.ALEN.ANG.ITY.ISN.IPA)
CALL MOVE(ALEN+ (R2+R3) ,ANG+AT8)
I=I-1
CALL PQP(I.IW.ALEN.ANG,ITY,ISN.IPA)

TO IW

(s-2)
CALL MOVE(ALENXS.ANG- ISN+AZB) (s-b)
CALL SETARY (3. IARRAY)
CALL MOVE(ALEN. ANG+PI)
CALL PATRN('PNT", ‘GRN')
CALL POLY (3. IARRAY)

(s=c)
paint vith greea

ELSE
CALL COLOR('BLK')
CALL DRAW (ALEN+S , ANG+ISN+A2SB]
CALL DRAW(ALEN+S, ANG-ISN+A28)
CALL MOVE(ALEN. ANG-PI)

BDIF
CALL POP(I.IW.ALEN.ANG,ITY,ISN.IPA)
Co TO IW

(r-10)

(r-11)

(r-12)
(r-13)

(r-14)

drav half square

drav boundary in black
)

divide half square

CALLPIS-I(IIVALBHSSMO!S! IPA)
G0 TO 1000

CALL POP(I-1,IW.ALEN.ANG.ITY.ISN.IPA)
CALL MOVE(ALEN« (S2+53), ANG+ISN+A2B)
ASSIGN 1021 TO IW

GAIJ. Pl&i(x.ﬂ ALBJ'SI ANG+ISN+A78,1,0,IPA)

MPG’(I]NALBIANSITYIS!IPA)
ASSICN 1023 TO

CALL PUSH(I.IV. ALEmSl ANG+ISN*AS8, 1,0, IPA)
0 TO 1000

CALL POP(I-1,IW,ALEN.ANG,ITY.ISN,IPA)
ASSIGN 1024 TO IV

Cll.l{u?l&l(l +IW.ALEN+S1.ANG+ISN#A38,1,0.IPA)

CALL POP(I-1,IW,ALEN,ANCG,ITY,ISN, IPA)
ASSIGN 1025 TO IV
CALL PUSH(I,IW.ALEN4S1,ANG+ISN«A18.1,0,IPA)
©0 TO 1000
CALL POP(I-1,IW.ALEN.ANG,ITY.ISN,IPA)
CALL MOVE(ALEN4S! , ANG+ISN+A38)
ASSIGN 1026 TO IW
CALL PUSH(I,IW.ALEN«S3,ANG+PI,0,ISN.IPA)
CO TO 1000

1
CALL POP(I-1.IW.ALEN.ANC,ITY.ISN,IPA)
ASSIGN 1027 TO IV
CALL PUSH(I.IW.ALEN«S3,ANG+PI,0,~ISN, IPA)
0 TO 1000
CALL POP(I-1, IHALBIAmmISllPA)
ASSIGN 1028 TO
CALL PUSH(I,IV. m ANG-ISN«A28.0.-ISN.IPA)
C0 TO 1000
CALL POP(I-1.IW,ALEN.ANG.ITY.ISN.IPA)
CALL MOVE (ALEN# (S3+S2) , ANG-ISN#A28)
ASSICN 1029 TO IW
CALL PUSH(I.IW,ALEN+S3.ANG+PI,0.-ISN.IPA)
€0 TO 1000
CALL POP(I-1,IW,ALEN.ANG.ITY,ISN.IPA)
CII-LI ImVEl (ALEN# (2. #S3+2.%S2) , ANG+PI)
CALL POP(I.IW.ALEN.ANG.ITY.ISN.IPA)
CO TO IV

BNDIF
END

SUBROUTINE PUSH(I.IW.ALEN.ANG.ITY.ISN.IPA)
IMPLICIT REAL#8 (A-H.0-Z)
COMMON IRET(10) ,ALENG(10) .ANGLE(10),
X ITYPE(10) ,ISIGN(10) ,IPAINT(10)
IREI(I) =

ISIGN(I) = ISN

(s-1)

(s-2)

(s-3)

(s4)

(s-5)

(s-6)

(s-D)

(s-8)

(s-9)

(s-10)

push stack



IPAINT(I) = IPA
RETURN
BD
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SUBROUTINE POP (I, IW.ALEN.ANG, ITY.ISN, IPA) Ppop stack

IMPLICIT REAL+8 (A-H.0-Z)

IRET (10) . ALENG(10) .ANGLE(10) ,

COMMON
X ITYPE(10) . ISIGN(10) , IPAINT(10)

IV = IRET

IPA = IPAINT(I)
RETURN
BOD
SUBROUTINE SETARY (I.IARRAY)
IMPLICIT REAL»8 (A-H.0-Z)
DIMENSION IARRAY(1)
(X,

CALL WHEREA (XX,

IARRAY (2+I-1) = XX + 0.51
IARRAY (2+«I) = YY + 0.51
RETURN

BOD

SUBROUTINE MOVE(R.T)
IMPLICIT REAL+8 (A-H.0-2)

set array of coord

get absolute coord
round-off to integer

move and shift origin

CALL PLOT (R+COS(T) » R+SINCT), -3)
RETURN

BOD

SUBROUTINE DRAW(R.T)
IMPLICIT REAL+8 (A-H.0-2)

drav and shift origin

CALL PLOT(R#COS(T), ReSIN(D), -2)
RETURN

BOD

Fig. A d

Drawing path
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